Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visible light and nanoparticle catalysts produce desirable bioactive molecules

31.10.2019

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as many lead compounds for drug development. Driven by light, the nanoparticle catalysts perform chemical reactions with very specific chemical products -- molecules that don't just have the right chemical formulas but also have specific arrangements of their atoms in space. And the catalyst can be reused for additional chemical reactions.


Molecules adsorb on the surface of semiconductor nanoparticles in very specific geometries. The nanoparticles use energy from incident light to activate the molecules and fuse them together to form larger molecules in configurations useful for biological applications.

Credit: Yishu Jiang, Northwestern University

The semiconductor nanoparticles are known as quantum dots -- so small that they are only a few nanometers across. But the small size is power, providing the material with attractive optical and electronic properties not possible at greater length scales.

"Quantum dots behave more like organic molecules than metal nanoparticles," said Emily A. Weiss, who led the research. "The electrons are squeezed into such a small space that their reactivity follows the rules of quantum mechanics. We can take advantage of this, along with the templating power of the nanoparticle surface."

This work, published recently by the journal Nature Chemistry, is the first use of a nanoparticle's surface as a template for a light-driven reaction called a cycloaddition, a simple mechanism for making very complicated, potentially bioactive compounds.

"We use our nanoparticle catalysts to access this desirable class of molecules, called tetrasubstituted cyclobutanes, through simple, one-step reactions that not only produce the molecules in high yield, but with the arrangement of atoms most relevant for drug development," Weiss said. "These molecules are difficult to make any other way."

Weiss is the Mark and Nancy Ratner Professor of Chemistry in the Weinberg College of Arts and Sciences. She specializes in controlling light-driven electronic processes in quantum dots and using them to perform light-driven chemistry with unprecedented selectivity.

The nanoparticle catalysts use energy from visible light to activate molecules on their surfaces and fuse them together to form larger molecules in configurations useful for biological applications. The larger molecule then detaches easily from the nanoparticle, freeing the nanoparticle to be used again in another reaction cycle.

In their study, Weiss and her team used three-nanometer nanoparticles made of the semiconductor cadmium selenide and a variety of starter molecules called alkenes in solution. Alkenes have core carbon-carbon double bonds which are needed to form the cyclobutanes.

###

The study is titled "Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots." Yishu Jiang, a graduate student in Weiss' lab, is the study's first author.

Amanda Morris | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41557-019-0344-4

More articles from Life Sciences:

nachricht Helping hands from within: Live-in bacteria protect plants against infections
04.11.2019 | Netherlands Institute of Ecology (NIOO-KNAW)

nachricht Lymphatic system found to play key role in hair regeneration
04.11.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

Im Focus: Structured light promises path to faster, more secure communications

Quantum mechanics is embracing patterns of light to create an alphabet that can be leveraged to build a light-based quantum network

Structured light is a fancy way to describe patterns or pictures of light, but deservedly so as it promises future communications that will be both faster and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

 
Latest News

The secret behind crystals that shrink when heated

04.11.2019 | Physics and Astronomy

Worldwide observations confirm nearby 'lensing' exoplanet

04.11.2019 | Physics and Astronomy

A new material for regenerative medicine capable to control cell immune response

04.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>