Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video of Moving Discs Reconstructed from Rat Retinal Neuron Signals

14.05.2018

Using machine-learning techniques, a research team has reconstructed a short movie of small, randomly moving discs from signals produced by rat retinal neurons. Vicente Botella-Soler of the Institute of Science and Technology Austria and colleagues present this work in PLOS Computational Biology. The accuracy of the reconstruction is higher for methods that can ignore spontaneous neural signals.

Neurons in the mammalian retina transform light patterns into electrical signals that are transmitted to the brain. Reconstructing light patterns from neuron signals, a process known as decoding, can help reveal what kind of information these signals carry.


Reconstructing a video from the retinal activity. Left: two example stimulus frames displayed to the rat retina. Middle and right: Reconstructions obtained with two different methods

Botella-Soler et al.

However, most decoding efforts to date have used simple stimuli and have relied on small numbers (fewer than 50) of retinal neurons.

In the new study, Botella-Soler and colleagues examined a small patch of about 100 neurons taken from the retina of a rat. They recorded the electrical signals produced by each neuron in response to short movies of small discs moving in a complex, random pattern. The researchers used various regression methods to compare their ability to reconstruct a movie one frame at a time, pixel by pixel.

The research team found that a mathematically simple linear decoder produced an accurate reconstruction of the movie. However, nonlinear methods reconstructed the movie more accurately, and two very different nonlinear methods, neural nets and kernelized decoders, performed similarly well.

Unlike linear decoders, the researchers demonstrated that nonlinear methods were sensitive to each neuron signal in the context of previous signals from the same neuron. The researchers hypothesized that this history dependence enabled the nonlinear decoders to ignore spontaneous neuron signals that do not correspond to an actual stimulus, while a linear decoder might “hallucinate” stimuli in response to such spontaneously generated neural activity.

These findings could pave the way to improved decoding methods and better understanding of what different types of retinal neurons do and why they are needed. As a next step, Botella-Soler and colleagues will investigate how well decoders trained on a new class of synthetic stimuli might generalize to both simpler as well as naturally complex stimuli.

“I hope that our work showcases that with sufficient attention to experimental design and computational exploration, it is possible to open the box of modern statistical and machine learning methods and actually interpret which features in the data give rise to their extra predictive power,” says study senior author Gasper Tkacik. “This is the path to not only reporting better quantitative performance, but also extracting new insights and testable hypotheses about biological systems.”

About IST Austria – www.ist.ac.at
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences.

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006057

Contact:
Name: Gasper Tkacik
Email: gtkacik@ist.ac.at
Ph: +43 2243 9000 4501

Citation: Botella-Soler V, Deny S, Martius G, Marre O, Tkačik G (2018) Nonlinear decoding of a complex movie from the mammalian retina. PLoS Comput Biol 14(5): e1006057. https://doi.org/10.1371/journal.pcbi.1006057


Funding: This work was supported by ANR TRAJECTORY, the French State program Investissements d'Avenir managed by the Agence Nationale de la Recherche [LIFESENSES: ANR-10-LABX-65], a EC grant from the Human Brain Project (FP7-720270)), and NIH grant U01NS090501 to OM, the Austrian Research
Foundation FWF P25651 to VBS and GT. VBS is partially supported by contract MEC, Spain (Grant No. AYA2013-48623-C2-2, No. AYA2016-81065-C2-2 and FEDER Funds). SD was supported by a PhD fellowship from the region Ile-de-France. GM received funding from the People Programme (Marie Curie Actions) in FP7/2007-2013 under REA grant agreement No.291734. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.


About PLOS Computational Biology
PLOS Computational Biology (www.ploscompbiol.org) features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. For more information follow @PLOSCompBiol on Twitter or contact ploscompbiol@plos.org.

Media and Copyright Information
For information about PLOS Computational Biology relevant to journalists, bloggers and press officers, including details of our press release process and embargo policy, visit http://journals.plos.org/ploscompbiol/s/press-and-media .

PLOS Journals publish under a Creative Commons Attribution License, which permits free reuse of all materials published with the article, so long as the work is cited.

About the Public Library of Science
The Public Library of Science (PLOS) PLOS is a nonprofit publisher and advocacy organization founded to accelerate progress in science and medicine by leading a transformation in research communication. For more information, visit http://www.plos.org.

Weitere Informationen:

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006057 freely available article in PLOS Computational Biology
http://ist.ac.at/en/research/research-groups/tkacik-group/ Website of the research group

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>