Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU Massey first to combine targeted agents to kill multiple myeloma cells

11.02.2011
Scientists at Virginia Commonwealth University Massey Cancer Center have developed a novel treatment strategy for multiple myeloma that pairs two targeted agents to kill cancer cells. The study's findings, published in today's edition of the journal "Blood," are the first to demonstrate the synergistic, anti-myeloma effects of this combination regimen both in vitro and in vivo.

Multiple myeloma is a cancer involving antibody-producing cells in the bone marrow, and, in most cases, is incurable. Targeted therapies work by interfering with biological and biochemical functions critical for cancer cell survival and proliferation.

The new treatment strategy from VCU Massey combines Src inhibitors, which block the activity of an important group of proteins that regulate cancer cell behavior, with Chk1 inhibitors, which interfere with cancer cells' ability to undergo cell cycle arrest and repair DNA damage.

"Chk1 inhibitors are currently used primarily in conjunction with conventional DNA-damaging chemotherapeutic agents," says the study's lead investigator Steven Grant, M.D., associate director for translational research, Shirley Carter and Sture Gordon Olsson Chair in Oncology Research and professor of internal medicine at VCU Massey Cancer Center. "By combining Chk1 inhibitors with another targeted agent, such as Src inhibitors, we were able to induce cell death in multiple myeloma cells while sparing healthy, normal cells."

When multiple myeloma cells are subjected to DNA-damaging agents, or even when they are undergoing normal DNA replication, their DNA is subject to breakage. To survive, they must slow down their progression through the cell cycle in order to repair the DNA, or, if the damage is too severe, undergo a form of cell suicide.

Chk1 is an enzyme that allows cells to undergo cell cycle arrest, a process required to repair the DNA damage. When cancer cells are exposed to Chk1 inhibitors, they experience DNA damage and, as a consequence, launch another defense mechanism by activating a protein known as ERK1/2.

"The activation of ERK1/2 explains why multiple myeloma cells are able to survive the lethal effects of Chk1 inhibitors," says Grant. "Therefore, we used Src inhibitors to block the activation of ERK1/2." The results were more promising than even the researchers had hoped.

Grant's team discovered that Src inhibitors not only blocked ERK1/2 activation, but also synergized with Chk1 inhibitors to trigger a dramatic increase in cell death. In addition, the combined treatment greatly reduced blood vessel formation, which plays an important role in the maintenance of many tumors, including multiple myeloma. Significantly, the treatment exerted virtually no effects on healthy, normal cells.

"We found tumors treated with the combined regimen were noticeably smaller and showed signs of a lack of blood supply when compared to tumors from the control group or those treated only with Chk1 inhibitors," says Grant. "This study is not only the first to demonstrate that Src inhibitors can dramatically increase the effects of Chk1 inhibitors, but it is also the first to show that preventing blood vessel formation may contribute to the effectiveness of this combination strategy."

This study builds upon more than seven years of research by Grant's team investigating cell signaling in relation to DNA damage repair and survival pathways involving Src and ERK1/2 proteins. The researchers are now developing more complex experiments as a prelude to clinical trials in multiple myeloma patients. "We're hopeful the approach of combining targeted agents will open up the possibility of developing entirely new therapies for patients with multiple myeloma and potentially other blood cancers," says Grant.

Co-investigators included the study's first author, Yun Dai, M.D., Ph.D., Shuang Chen, M.D., Ph.D., and Xinyan Pei, M.D., all from the VCU Department of Internal Medicine; and Paul Dent, Ph.D., Universal Distinguished Professor in Cancer Cell Signaling at VCU Massey. Funding for the study was provided by grants from the National Cancer Institute, the Multiple Myeloma Foundation, the V Foundation for Cancer Research and a Specialized Programs of Research Excellent (SPORE) award.

The full journal article is available online at: http://bloodjournal.hematologylibrary.org/cgi/content/short/blood-2010-06-291146v1.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>