Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban athletes show that for orangutans, it pays to sway

04.07.2012
Swaying trees is the way to go, if you are a primate crossing the jungle. Using human street athletes as stand-ins for orangutans, researchers have measured the energy required to navigate a forest using different strategies and found it pays to stay up in the trees. Their work was presented at the Society for Experimental Biology's meeting in Salzburg, Austria on 2 July 2012.

The findings help us to understand why orangutans spend most of their lives in trees despite being much larger than other tree-dwelling animals. It also helps to explain how these primates get by on their diet of mainly fruit, which does not provide a lot of energy.

Dr Lewis Halsey of the University of Roehampton, who led the study, said: "Energy expenditure could be a key constraint for orangutans – moving through trees could be energetically expensive."

The team found that the most efficient way to cross from one tree to another is usually to sway back and forth on your tree until you can reach the next one. When trees are stiff, it is more efficient to jump.

For heavy primates the tree must be quite stiff before jumping becomes the easier option. According to Halsey: "Heavier orangutans don't jump, and we may have an explanation why."

To compare the energy required to sway trees, climb trees, or jump from branch to branch, Halsey's team created obstacle courses simulating these activities. But instead of orangutans, the participants were parkour athletes, specially trained street gymnasts with good flexibility and spatial awareness. The athletes wore devices that recorded their oxygen consumption as they proceeded through the activities.

Halsey added: "Because primates are not easy to work with, estimates of energy expenditure have been very indirect. We have gone a step closer to understanding these costs by measuring energy expenditure in a model primate – the parkour athlete."

Catie Lichten | EurekAlert!
Further information:
http://www.sebiology.org/

More articles from Life Sciences:

nachricht Developing a digital holography-based multimodal imaging system to visualize living cells
03.06.2020 | Kobe University

nachricht Possible physical trace of short-term memory found
03.06.2020 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>