Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unknown animals nearly invisible but yet there

22.03.2011
Bryozoans (moss animals) are a group of aquatic invertebrates that are found in great variety throughout the world, with well over 100 species in Sweden alone. Yet little is known about them. Researchers at the University of Gothenburg have now studied Swedish bryozoan species using DNA techniques.

“There are currently over 6 000 known species of Bryozoa. Earlier studies were based on visible characteristics of these animals, which is not sufficient to decide how the species are related to each other. To understand the evolution of bryozoans and how they are related to other animals, it is necessary to use molecular data, that’s to say DNA,” says Judith Fuchs of the Department of Zoology at the University of Gothenburg.

When Bryozoa were discovered in the 16th century, they were regarded as plants. Later on they were found to have a nervous system, muscles and an intestinal system and were classified as animals. On their own, bryozoans are barely visible to the naked eye, but like coral animals all bryozoans build colonies that reach several centimetres in size and some species build colonies of over 30cm.

In her thesis, Fuchs has studied the evolution and relationships of Bryozoa using molecular data (DNA) from more than 30 bryozoan species, most collected in Sweden. The results show that this animal group developed from a common ancestor that probably lived in the sea. Two groups of Bryozoa evolved from this common ancestor: a group that stayed in the marine environment and another that evolved in freshwater. The DNA studies of the larval stage of Bryozoa can also contribute to a better understanding of the evolution of life cycles and larval stages of other multicellular animals.

Together with her supervisor, Matthias Obst, over a period of four years she has also taken part in the marine inventory of the Swedish Species Project along the west coast of Sweden. The collection of all marine bottom-living animals is based on more than 500 samples from 400 locations.

“We found as many as 120 marine bryozoan species in our waters, and many of them had not been previously known in Sweden. We also found a completely new species of Bryozoa. This is a very small bryozoan with characteristic spikes on its surface, which I have described in my thesis.”

To date, 45 per cent of the bryozoans collected in the inventory have been determined.

“Sweden has a very rich bryozoan fauna. On your next trip to the beach you might perhaps take a closer look at seaweed or pebbles. If you see a white covering with small holes in it, you have found a bryozoan colony for yourself.”

The thesis New Insights into the Evolution of Bryozoa - An Integrative Approach was publicly defended on 11 March. Supervisor: Matthias Obst, PhD, and Professor Per Sundberg.

Journal: Molecular Phylogenetics and Evolution 2010, 56:370-379 Author: Fuchs J, Iseto T, Hirose M, Sundberg P, Obst M

Title: The first internal molecular phylogeny of the animal phylum Entoprocta (Kamptozoa)

For further information please contact:
Judith Fuchs
Mobile: +46 (0)76 272 8443
judith.fuchs@zool.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/24283

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>