Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC researchers decode structure of an entire HIV genome

07.08.2009
The structure of an entire HIV genome has been decoded for the first time by researchers at the University of North Carolina at Chapel Hill. The results have widespread implications for understanding the strategies that viruses, like the one that causes AIDS, use to infect humans.

The study, the cover story in the Aug. 6, 2009, issue of the journal Nature, also opens the door for further research which could accelerate the development of antiviral drugs.

HIV, like the viruses that cause influenza, hepatitis C and polio, carries its genetic information as single-stranded RNA rather than double-stranded DNA. The information encoded in DNA is almost entirely in the sequence of its building blocks, which are called nucleotides. But the information encoded in RNA is more complex; RNA is able to fold into intricate patterns and structures. These structures are created when the ribbon-like RNA genome folds back on itself to make three-dimensional objects.

Kevin Weeks, Ph.D., a professor of chemistry in UNC's College of Arts and Sciences who led the study, said prior to this new work researchers had modeled only small regions of the HIV RNA genome. The HIV RNA genome is very large, composed of two strands of nearly 10,000 nucleotides each.

Weeks, who is also a member of the UNC Lineberger Comprehensive Cancer Center, and Joseph M. Watts, a chemistry postdoctoral fellow supported by the Lineberger Center, used technology developed by Weeks' lab to analyze the architecture of HIV genomes isolated from infectious cultures containing trillions of viral particles that were grown by Robert Gorelick, Ph.D., and Julian Bess of the National Cancer Institute.

They then teamed up with UNC researchers in the College and the School of Medicine for further analysis: Christopher Leonard in the department of chemistry; Kristen Dang, Ph.D., from biomedical engineering; Ron Swanstrom, Ph.D., a professor of microbiology and immunology at UNC Lineberger; and Christina Burch, Ph.D., an associate professor of biology. They found that the RNA structures influence multiple steps in the HIV infectivity cycle.

"There is so much structure in the HIV RNA genome that it almost certainly plays a previously unappreciated role in the expression of the genetic code," Weeks said.

Swanstrom and Weeks note that the study is the key to unlocking additional roles of RNA genomes that are important to the lifecycle of these viruses in future investigations.

"One approach is to change the RNA sequence and see if the virus notices," Swanstrom said. "If it doesn't grow as well when you disrupt the virus with mutations, then you know you've mutated or affected something that was important to the virus."

Weeks added: "We are also beginning to understand tricks the genome uses to help the virus escape detection by the human host."

The study was supported by the National Institutes of Health and the National Cancer Institute.

Kim Spurr | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Cancer DNA HIV HIV RNA genome HIV genome Hepatitis C Influenza Polio RNA Swanstrom UNC ribbon-like RNA genome

More articles from Life Sciences:

nachricht Novel carbon source sustains deep-sea microorganism communities
18.09.2018 | King Abdullah University of Science & Technology (KAUST)

nachricht New insights into DNA phase separation
18.09.2018 | Ulsan National Institute of Science and Technology (UNIST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>