Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF team finds new source of immune cells during pregnancy

17.12.2010
UCSF researchers have shown for the first time that the human fetal immune system arises from an entirely different source than the adult immune system, and is more likely to tolerate than fight foreign substances in its environment.

The finding could lead to a better understanding of how newborns respond to both infections and vaccines, and may explain such conundrums as why many infants of HIV-positive mothers are not infected with the disease before birth, the researchers said.

It also could help scientists better understand how childhood allergies develop, as well as how to manage adult organ transplants, the researchers said. The findings are described in the Dec. 17 issue of Science and at www.sciencemag.org/content/330/6011/1695.full.html.

Until now, the fetal and infant immune system had been thought to be simply an immature form of the adult system, one that responds differently because of a lack of exposure to immune threats from the environment. The new research has unveiled an entirely different immune system in the fetus at mid-term that is derived from a completely different set of stem cells than the adult system.

“In the fetus, we found that there is an immune system whose job it is to teach the fetus to be tolerant of everything it sees, including its mother and its own organs,” said Joseph M. McCune, MD, PhD, a professor in the UCSF Division of Experimental Medicine who is a co-senior author on the paper. “After birth, a new immune system arises from a different stem cell that instead has the job of fighting everything foreign.”

The team previously had discovered that fetal immune systems are highly tolerant of cells foreign to their own bodies and hypothesized that this prevented fetuses from rejecting their mothers’ cells during pregnancy and from rejecting their own organs as they develop.

The adult immune system, by contrast, is programmed to attack anything it considers “other,” which allows the body to fight off infection, but also causes it to reject transplanted organs.

“The adult immune system’s typical role is to see something foreign and to respond by attacking and getting rid of it. The fetal system was thought in the past to fail to ‘see’ those threats, because it didn’t respond to them,” said Jeff E. Mold, first author on the paper and a postdoctoral fellow in the McCune laboratory. “What we found is that these fetal immune cells are highly prone to ‘seeing’ something foreign, but instead of attacking it, they allow the fetus to tolerate it.”

The previous studies attributed this tolerance at least in part to the extremely high percentage of “regulatory T cells”– those cells that provoke a tolerant response – in the fetal immune system. At mid-term, fetuses have roughly three times the frequency of regulatory T cells as newborns or adults, the research found.

The team set out to assess whether fetal immune cells were more likely to become regulatory T cells. They purified so-called naïve T cells – new cells never exposed to environmental assault – from mid-term fetuses and adults, and then exposed them to foreign cells. In a normal adult immune system, that would provoke an immune attack response.

They found that 70 percent of the fetal cells were activated by that exposure, compared to only 10 percent of the adult cells, refuting the notion that fetal cells don’t recognize outsiders. But of those cells that responded, twice as many of the fetal cells turned into regulatory T cells, showing that these cells are both more sensitive to stimulation and more likely to respond with tolerance, Mold said.

Researchers then sorted the cells by gene expression, expecting to see similar expression of genes in the two cell groups. In fact, they were vastly different, with thousands of genes diverging from the two cell lines. When they used blood-producing stem cells to generate new cell lines from the two groups, the same divergence occurred.

“We realized they there are in fact two blood-producing stem cells, one in the fetus that gives rise to T cells that are tolerant and another in the adult that produces T cells that attack,” Mold said.

Why that occurs, and why the immune system appears to switch over to the adult version sometime in the third trimester, remains unknown, McCune said. Further studies will attempt to determine precisely when that occurs and why, as well as whether infants are born with a range of proportions of fetal and adult immune systems – information that could change the way we vaccinate newborns or treat them for such diseases as HIV.

Co-authors of the study include Trevor D. Burt, Jose M. Rivera, Sofiya Galkina and co-senior author Cheryl A. Stoddart, all from the UCSF Department of Medicine, Division of Experimental Medicine; Jakob Michaelsson, from the Center for Infectious Medicine, Karlinska Institutet, Stockholm, Sweden; and Shivkumar Venkatasubrahmanyam and Kenneth Weinberg, of the Center for Biomedical Informatics Research and Division of Hematology/Oncology, respectively, at Stanford University, Palo Alto, Calif. Burt also is affiliated with the UCSF Division of Neonatology in the Department of Pediatrics.

Support for this work was provided by grants from the National Institutes of Health and from the Harvey V. Berneking Living Trust. The authors report no conflicts of interest in this research. Further information can be found in the full paper at www.sciencemag.org.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For more information, visit www.ucsf.edu.

Accompanying scientific commentary: http://www.sciencemag.org/content/330/6011/1635.full.html

Follow UCSF on Twitter at http://twitter.com/ucsf

Kristen Bole | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Division Medicine T cells UCSF immune cell immune system stem cells

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>