Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB researchers find a way to detect stealthy, 'hypervirulent' Salmonella strains

13.04.2012
A recent discovery of "hypervirulent" Salmonella bacteria has given UC Santa Barbara researchers Michael Mahan and Douglas Heithoff a means to potentially prevent food poisoning outbreaks from these particularly powerful strains.

Their findings, in a paper titled "Intraspecies Variation in the Emergence of Hyperinfectious Bacterial Strains in Nature," have been published in the journal PLoS Pathogens.


Salmonella typhimurium (red) invades cultured human cells in this color-enhanced scanning electron micrograph. Credit: Rocky Mountain Laboratories, NIAID, NIH

Salmonella is the most common cause of infection, hospitalization, and death due to foodborne illness in the U.S. This burden may continue to worsen due to the emergence of new strains that would tax current health-control efforts. To address this problem, researchers sought out –– and found –– hypervirulent strains that present a potential risk to food safety and the livestock industry.

An international team of scientists –– which also included Robert Sinsheimer and William Shimp from UCSB; Yi Xie and Bart Weimer from UC Davis; and John House from University of Sydney, Australia –– conducted a global search for hypervirulent Salmonella strains. They were found among isolates derived from livestock, and rendered current vaccines obsolete.

Bacteria behave like a Trojan Horse, exposing their weapons only after initiating infection. "These strains exhibit this behavior in the extreme –– essentially having a '5th gear' they can switch to during infection," said Heithoff, lead author of the paper.

Previous efforts to find hypervirulent strains were unsuccessful since bacteria behave much like their less-virulent cousins after environmental exposure. "The trick was to assess their virulence during infection –– before they switch back to a less-virulent state in the lab," said Professor Mahan.

Now that researchers know what to look for, they are developing methods to rapidly detect and discriminate the more harmful strains from their less-virulent cousins. The strategy is aided by a special medium utilized by the researchers that forces the bacteria to reveal their weapons in the laboratory –– the first step in the design of therapeutics to combat them.

Humans usually get Salmonella food poisoning from eating contaminated beef, chicken, or eggs. However, animal waste can contaminate fields where fruits, nuts, and vegetables are grown, thus posing a particular health concern for vegetarians. The threat is exacerbated when these foods are not cooked. Salmonella control efforts are expensive –– recent estimates place this cost up to $14.6 billion annually in the U.S.

As hypervirulent strains pose a potential risk to human and animal health, mitigation efforts warrant researchers' careful attention. "Now that we have identified the problem –– and potential solutions –– we just need to get to work," Heithoff said.

This research was launched with support from The G. Harold & Leila Y. Mathers Foundation, which then leveraged additional funding from the U.S. Department of Agriculture, National Institutes of Health, U.S. Army, and Santa Barbara Cottage Hospital Research Program.

To read the paper, visit: http://dx.plos.org/10.1371/journal.ppat.1002647

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>