Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientist uncovers biological clock able to measure age of most human tissues

21.10.2013
Study finds women's breast tissue ages faster than rest of body

Everyone grows older, but scientists don't really understand why. Now a UCLA study has uncovered a biological clock embedded in our genomes that may shed light on why our bodies age and how we can slow the process.

Published in the Oct. 21 edition of Genome Biology, the findings could offer valuable insights into cancer and stem cell research.

While earlier clocks have been linked to saliva, hormones and telomeres, the new research is the first to identify an internal timepiece able to accurately gauge the age of diverse human organs, tissues and cell types. Unexpectedly, the clock also found that some parts of the anatomy, like a woman's breast tissue, age faster than the rest of the body.

"To fight aging, we first need an objective way of measuring it. Pinpointing a set of biomarkers that keeps time throughout the body has been a four-year challenge," explained Steve Horvath, a professor of human genetics at the David Geffen School of Medicine at UCLA and of biostatistics at the UCLA Fielding School of Public Health. "My goal in inventing this clock is to help scientists improve their understanding of what speeds up and slows down the human aging process."

To create the clock, Horvath focused on methylation, a naturally occurring process that chemically alters DNA. Horvath sifted through 121 sets of data collected previously by researchers who had studied methylation in both healthy and cancerous human tissue.

Gleaning information from nearly 8,000 samples of 51 types of tissue and cells taken from throughout the body, Horvath charted how age affects DNA methylation levels from pre-birth through 101 years. To create the clock, he zeroed in on 353 markers that change with age and are present throughout the body.

Horvath tested the clock's effectiveness by comparing a tissue's biological age to its chronological age. When the clock repeatedly proved accurate, he was thrilled—and a little stunned.

"It's surprising that one could develop a clock that reliably keeps time across the human anatomy," he admitted. "My approach really compared apples and oranges, or in this case, very different parts of the body: the brain, heart, lungs, liver, kidney and cartilage."

While most samples' biological ages matched their chronological ages, others diverged significantly. For example, Horvath discovered that a woman's breast tissue ages faster than the rest of her body.

"Healthy breast tissue is about two to three years older than the rest of a woman's body," said Horvath. "If a woman has breast cancer, the healthy tissue next to the tumor is an average of 12 years older than the rest of her body."

The results may explain why breast cancer is the most common cancer in women. Given that the clock ranked tumor tissue an average of 36 years older than healthy tissue, it could also explain why age is a major risk factor for many cancers in both genders.

Horvath next looked at pluripotent stem cells, adult cells that have been reprogrammed to an embryonic stem cell–like state, enabling them to form any type of cell in the body and continue dividing indefinitely.

"My research shows that all stem cells are newborns," he said. "More importantly, the process of transforming a person's cells into pluripotent stem cells resets the cells' clock to zero."

In principle, the discovery proves that scientists can rewind the body's biological clock and restore it to zero.

"The big question is whether the biological clock controls a process that leads to aging," Horvath said. "If so, the clock will become an important biomarker for studying new therapeutic approaches to keeping us young."

Finally, Horvath discovered that the clock's rate speeds up or slows down depending on a person's age.

"The clock's ticking rate isn't constant," he explained. "It ticks much faster when we're born and growing from children into teenagers, then slows to a constant rate when we reach 20."

In an unexpected finding, the cells of children with progeria, a genetic disorder that causes premature aging, appeared normal and reflected their true chronological age.

UCLA has filed a provisional patent on Horvath's clock. His next studies will examine whether stopping the body's aging clock halts the aging process--or increases cancer risk. He'll also explore whether a similar clock exists in mice.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>