Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers identify brain cells responsible for keeping us awake

04.11.2011
Bright light arouses us. Bright light makes it easier to stay awake. Very bright light not only arouses us but is known to have antidepressant effects. Conversely, dark rooms can make us sleepy. It's the reason some people use masks to make sure light doesn't wake them while they sleep.

Now researchers at UCLA have identified the group of neurons that mediates whether light arouses us — or not. Jerome Siegel, a professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior at UCLA, and colleagues report in the current online edition of the Journal of Neuroscience that the cells necessary for a light-induced arousal response are located in the hypothalamus, an area at the base of the brain responsible for, among other things, control of the autonomic nervous system, body temperature, hunger, thirst, fatigue — and sleep.

These cells release a neurotransmitter called hypocretin, Siegel said. The researchers compared mice with and without hypocretin and found that those who didn't have it were unable to stay awake in the light, while those who had it showed intense activation of these cells in the light but not while they were awake in the dark.

This same UCLA research group earlier determined that the loss of hypocretin was responsible for narcolepsy and the sleepiness associated with Parkinson's disease. But the neurotransmitter's role in normal behavior was, until now, unclear.

"This current finding explains prior work in humans that found that narcoleptics lack the arousing response to light, unlike other equally sleepy individuals, and that both narcoleptics and Parkinson's patients have an increased tendency to be depressed compared to others with chronic illnesses," said Siegel, who is also a member of the UCLA Brain Research Institute and chief of neurobiology research at the Sepulveda Veterans Affairs Medical Center in Mission Hills, Calif.

Prior studies of the behavioral role of hypocretin in rodents had examined the neurotransmitter's function during only light phases (normal sleep time for mice) or dark phases (their normal wake time), but not both. And the studies only examined the rodents when they were performing a single task.

In the current study, researchers examined the behavioral capabilities of mice that had their hypocretin genetically "knocked-out" (KO mice) and compared them with the activities of normal, wild-type mice (WT) that still had their hypocretin neurons. The researchers tested the two groups while they performed a variety of tasks during both light and dark phases.

Surprisingly, they found that the KO mice were only deficient at working for positive rewards during the light phase. During the dark phase, however, these mice learned at the same rate as their WT littermates and were completely unimpaired in working for the same rewards.

Consistent with the data in the KO mice, the activity of hypocretin neurons in their WT littermates was maximized when working for positive rewards during the light phase, but the cells were not activated when performing the same tasks in the dark phase.

"The findings suggest that administering hypocretin and boosting the function of hypocretin cells will increase the light-induced arousal response," Siegel said. "Conversely, blocking their function by administering hypocretin receptor blockers will reduce this response and thereby induce sleep."

Further, Siegel noted, "The administration of hypocretin may also have antidepressant properties, and blocking it may increase tendencies toward depression. So we feel this work has implications for treating sleep disorders as well as depression."

Other authors on the study included Ronald McGregor (first author), Ming-Fung Wu, Grace Barber and Lalini Ramanathan, all of UCLA, the Veterans Affairs Greater Los Angeles Healthcare System and the UCLA Brain Research Institute.

The research was supported by the National Institutes of Health and the Medical Research Service of the Department of Veterans Affairs. The authors report no conflict of interest.

The UCLA Department of Psychiatry and Biobehavioral Sciences is the home within the David Geffen School of Medicine at UCLA for faculty who are experts in the origins and treatment of disorders of complex human behavior. The department is part of the Semel Institute for Neuroscience and Human Behavior at UCLA, a world-leading interdisciplinary research and education institute devoted to the understanding of complex human behavior and the causes and consequences of neuropsychiatric disorders.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A materials scientist’s dream come true

21.08.2018 | Materials Sciences

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>