Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UChicago scientists craft world's tiniest interlinking chains

08.12.2017

New manufacturing technique overcomes half-century of failed attempts

For decades, scientists have been trying to make a true molecular chain: a repeated set of tiny rings interlocked together. In a study in Science published online Nov. 30, University of Chicago researchers announced the first confirmed method to craft such a molecular chain.


Scientists discovered a way to manufacture tiny interlocking chains (right, with chemical formulas at left) with loops each just a nanometer across.

Credit: Peter Allen/University of Chicago

Many molecules described as "linked" are joined with fixed covalent bonds--not two freely moving interlocked rings. The distinction makes a big difference when it comes to how the chain moves.

"Think about dangling a silver chain onto your palm: It collapses easily into a flat pool and can flow off your hand, much different from a string of fixed beads," said Stuart Rowan, a professor at UChicago's Institute for Molecular Engineering and Department of Chemistry and lead author on the paper.

The longer interlocked chains could make materials or machines with intriguing properties, researchers said. Polymers--materials made of repeated units joined together--are extremely useful in everyday life, making up everything from plastics to proteins; and this new way to combine the repeat units could open new avenues in engineering.

"A metal rod is rigid, but a metal chain made of the same material is very flexible," said UChicago postdoctoral researcher Qiong Wu, the first author on the paper. "By keeping the same chemical composition but changing the architecture, you can dramatically change the material's behavior."

Previous techniques--including one that earned its inventor a share in the 2016 Nobel Prize in Chemistry--had only been able to link at most seven rings together. Instead of trying to combine sets of two or three loops into a larger chain, the new method combines a number of closed rings and open loops. They added a metal ion that held the loops and rings together, performed a reaction to close the open loops and then removed the metal to reveal a set of interlocked loops all at once, two dozen or more loops long.

Because they are so vanishingly small--each loop is about a nanometer in diameter, less than a hundred atoms across--the team spent a lot of time proving the chain really had freely rotating loops. But a combination of experimental and computational techniques convinced the researchers they were real.

It's been theorized that such chains should absorb energy well--a useful property for dampening sound or absorbing vibrations. It should use less energy to collapse into smaller configurations, since it takes less energy to move a ring than to manipulate covalent bonds. It's even possible the chains could be built to expand and contract like an accordion based on a stimulus; all interesting abilities for tiny machines.

"This is really a new polymer architecture, which could offer you all the benefits of polymers--such as powerful functionality and tunability--plus the ability to coordinate and engineer their motion at the very small scale," said graduate student Phil Rauscher, also a coauthor.

"We're very excited to explore their properties now that we know how to make them," Rowan said.

###

The other UChicago author on the paper was Prof. Juan de Pablo of the Institute for Molecular Engineering.

Media Contact

Louise Lerner
louise@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Louise Lerner | EurekAlert!

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>