Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ubiquitous and influential

14.02.2017

Scientists at the University of Würzburg have generated new insights into the intricate molecular underpinnings of ubiquitin signaling. Their results may provide new avenues for cancer therapy.

The small protein ubiquitin regulates a plethora of physiological and pathophysiological processes in the human body. It lives up to its name quite literally by being ubiquitous, both in terms of its abundance and its far-reaching regulatory impact.


Crystal structure of the ubiquitin ligase HUWE1 in the newly discovered inactive state. The region that mediates dimer formation is highlighted (orange, dark blue).

Graphic: Sonja Lorenz


Sonja Lorenz and Postdoc Bodo Sander

Photo: Lena Ries

How ubiquitin exerts its diverse functions is intensely studied all over the world. Finding answers to this question is essential to exploit the ubiquitin system efficiently for therapeutic purposes. Researchers from Würzburg have taken a key step towards this goal. Their results reveal new ways of regulating a ubiquitin ligase.

Enzymes that determine a protein’s fate

“Ubiquitin ligases are enzymes that decorate cellular target proteins with ubiquitin and thus determine the fate of these target proteins,“ says Dr. Sonja Lorenz, senior author on the study. Ubiquitin can act as a “molecular postal code“ that can guide target proteins to specific locations in the cell, lead them to serve distinct functions, carry molecular signals, integrate into large complexes, or even be destroyed.

Sonja Lorenz heads a research group at the Rudolf Virchow Center for Experimental Biomedicine at the University of Würzburg. Her team and colleagues study a particular ubiquitin ligase, HUWE1, that has been ascribed key roles in tumor formation and is considered a promising, yet unexploited cancer-therapeutic target. Their new results on the molecular mechanism of HUWE1 are reported in the journal eLife.

Divide and rule: breaking down a protein giant

With almost 4.400 amino acids HUWE1 is an extremely large protein. Its three-dimensional structure, for the most part, is unknown. “The enormous size of HUWE1 and its flexibility present a considerable challenge for structural biologists,“ says Sonja Lorenz. To get a handle on the protein giant, her research team followed the ancient Roman principle “divide et impera – divide and rule” and has initially determined the atomic structure of a portion of HUWE1 using X-ray crystallography.
This structure reveals a new and intriguing feature of HUWE1: Two HUWE1 molecules can pair up to form a complex known as a “dimer”, thereby shutting down their enzymatic activities.

Imbalances with consequences

How does the cell prevent HUWE1 from forming dimers when the enzyme needs to be active? The Würzburg researchers also provide an answer to this question: HUWE1 exists in a fine-tuned balance of inactive dimers and single, active molecules. “Various cellular factors can regulate this balance,” says Sonja Lorenz.

The tumor suppressor protein p14ARF is one such factor. It inhibits HUWE1, but is frequently lost in cancer cells. The new study provides the first mechanistic explanation of how p14ARF inhibits HUWE1. “The effects of p14ARF on the structure and activity of HUWE1 are extremely exciting,” says Sonja Lorenz. “They open up a range of possibilities to manipulate HUWE1 activity that we are following up on.”

Personal details: Sonja Lorenz

Dr. Sonja Lorenz holds an Emmy Noether grant from the German Research Foundation with which she established her lab at the Rudolf Virchow Center of the University of Würzburg in April 2014. She is the deputy speaker of the new Research Training Group 2243, “Understanding Ubiquitylation: From Molecular Mechanisms to Disease“, that will start in April 2017. Her studies on the interplay of HUWE1 and p14ARF are supported by the Wilhelm Sander-Foundation for medical research.

The human ubiquitin ligase HUWE1 is regulated by a conformational switch. Bodo Sander, Wenshan Xu, Martin Eilers, Nikita Popov, Sonja Lorenz. DOI: 10.7554/eLife.21036

Contact details:

Dr. Sonja Lorenz, Rudolf Virchow Center for Experimental Biomedicine, phone: (0931) 31-80526, e-mail: sonja.lorenz@virchow.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht How the gut ‘talks’ to brown fat
15.11.2018 |

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>