Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuning natural antimicrobials to improve their effectiveness at battling superbugs

23.08.2011
Ongoing research at the Institute of Food Research, which is strategically funded by BBSRC, is exploring the use of virus-produced proteins that destroy bacterial cells to combat potentially dangerous microbial infections.

Bacteriophages produce endolysin proteins that specifically target certain bacteria, and IFR has been studying one that destroys Clostridium difficile, a common and dangerous source of hospital-acquired infections. New research is showing that it is possible to 'tune' these endolysin properties to increase their effectiveness and aid their development as a new weapon in the battle against superbugs.

Clostridium difficile infection (CDI) is a common and growing problem as a cause of infections, especially in hospitals where the characteristics of the bacteria make it difficult to clear. At the moment, antibiotics are used to treat infections, but C. difficile is adept at acquiring resistance, meaning the number of effective antibiotics is ever decreasing.

This has driven the search for new antimicrobials, and at IFR Melinda Mayer and Arjan Narbad have been focussing on bacteriophage endolysins. These are relatively short proteins produced by viruses that specifically target certain species of bacteria and then break open the cell walls. They had previously isolated an endolysin, CD27L, which is active against C. difficile when applied externally, but does not affect a large range of other bacteria. This is important as any potential treatment must not affect the native gut bacteria in patients, whose gut microbiota may already have been disturbed.

... more about:
»Clostridium »Clostridium difficile »IfR

However, although CD27L works in the laboratory, its activity would probably not be high enough to cope with the vast numbers of C. difficile cells in a growing population in the harsh gut environment to be used as an effective treatment. This prompted the researchers to look more closely at the endolysin.

Endolysins commonly have two domains, one at each end. One domain is thought to be responsible for the specificity of the endolysin, allowing it to bind specifically to wall molecules unique to the bacterial species. This is what was thought to give the endolysin its specific host range. The other catalytic domain attacks the cell wall, causing lysis.

They produced shortened versions of the endolysin containing only one of these domains. The truncated CD27L containing only the catalytic domain showed a much higher activity against the C. difficile cells. Surprisingly, however, the truncated endolysin was still inactive on a range of other bacteria, even though the domain thought to make it specific had been removed.

Working with colleagues at the European Molecular Biology Laboratory (EMBL) in Hamburg, the structure of the catalytic domain was solved and used to design mutants to investigate what controls the specificity and activity of the endolysins. The researchers propose that the catalytic domain contributes to the specificity of the endolysin.

In the case of CD27L, binding to the cell wall is not a critical part of the activity of the endolysin, and from these results seems to reduce the activity. This fundamental science on the mode of action of endolysins establishes that in the development of valuable novel therapeutics it may be more appropriate to use truncated versions of endolysins.

Reference: Structure-based modification of a Clostridium difficile targeting endolysin affects activity and host range Mayer, M.J. et al Journal of Bacteriology doi:10.1128/JB.00439-11

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

Further reports about: Clostridium Clostridium difficile IfR

More articles from Life Sciences:

nachricht Hygiene at your fingertips with the new CleanHand Network
25.09.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Scientists discovered 20 new gnat species in Brazil
24.09.2018 | Estonian Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>