Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TSRI Scientists Create New Tool for Exploring Cells in 3D

02.12.2014

As Proof-of-Principle, Model Provides Insight into HIV Structure

Researchers can now explore viruses, bacteria and components of the human body in more detail than ever before with software developed at The Scripps Research Institute (TSRI).


The new software can generate editable models of mid-size biological structures such as this one of HIV. (Image created by Graham Johnson and Ludovic Autin of The Scripps Research Institute.)

In a study published online ahead of print December 1 by the journal Nature Methods, the researchers demonstrated how the software, called cellPACK, can be used to model viruses such as HIV.

“We hope to ultimately increase scientists’ ability to target any disease,” said Art Olson, professor and Anderson Research Chair at TSRI who is senior author of the new study.

Putting cellPACK to the Test

The cellPACK software solves a major problem in structural biology. Although scientists have developed techniques to study relatively large structures, such as cells, and very small structures, such as proteins, it has been harder to visualize structures in the medium “mesoscale” range.

With cellPACK, researchers can quickly and efficiently process the data they’ve collected on smaller structures to assemble models in this mid-size range. Previously, researchers had to create these models by hand, which took weeks or months compared with just hours in cellPACK.

As a demonstration of the software’s power, the authors of the new study created a model of HIV showing how outer “spike” proteins are distributed on the surface of the immature virus.

The new model put to the test a conclusion made by HIV researchers from super-resolution microscopic studies—that the distribution of the spike proteins on the surface of the immature virus is random. But by using cellPACK to generate thousands of models, testing alternative hypotheses, the researchers found that the distribution was not random. “We demonstrated that their interpretation of the distribution did not match that hypothesis,” said Olson.

A Team Effort

The cellPACK software began as the thesis project of a TSRI graduate student, Graham Johnson, now a QB3 faculty fellow at the University of California, San Francisco (UCSF) who continues to contribute to the project. Johnson had more 15 years’ experience as a medical illustrator, and he wanted to create an easy way to visualize mesoscale structures. cellPACK is an expansion of Johnson’s autoPACK software, which maps out the density of materials—from concrete in a building to red blood cells in an artery.

The researchers see cellPACK as a community effort, and they have made the autoPACK and cellPACK software free and open source. Thousands of people have already downloaded the software from http://www.autopack.org .

“With the creation of cellPACK, Dr. Olson and his colleagues have addressed the challenge of integrating biological data from different sources and across multiple scales into virtual models that can simulate biologically relevant molecular interactions within a cell,” said Veersamy Ravichandran, PhD, of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the research. “This user-friendly tool provides a new platform for data analysis and simulation in a collaborative manner between laboratories.”

As new information comes in from the scientific community, researchers will tweak the software so it can model new shapes. “Making it open source makes it more powerful,” said Olson. “The software right now is usable and very useful, but it’s really a tool for the future.”

In addition to Olson and Johnson, other authors of the study, “cellPACK: A Virtual Mesoscope to Model and Visualize Structural Systems Biology,” are Ludovic Autin, Mostafa Al-Alusi, David S. Goodsell and Michel F. Sanner, all of TSRI. For more information, see http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3204.html

This study was supported by the National Science Foundation (NSF 07576), Autodesk, the National Institutes of Health (P41 GM103426 and P50GM103368), the California Institute for Quantitative Biosciences and a UCSF School of Pharmacy 2013 Mary Anne Koda-Kimble Seed Award for Innovation.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including two Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu  .

For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Madeline McCurry-Schmidt | EurekAlert!
Further information:
http://www.scripps.edu/news/press/2014/20141201olson.html

Further reports about: Cells TSRI UCSF data analysis immature proteins red blood cells rheumatoid arthritis structures viruses

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>