Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees either hunker down or press on in a drying and warming western US climate

11.12.2015

In the face of adverse conditions, people might feel tempted by two radically different options -- hunker down and wait for conditions to improve, or press on and hope for the best. It would seem that trees employ similar options when the climate turns dry and hot.

Two University of Washington researchers have uncovered details of the radically divergent strategies that two common tree species employ to cope with drought in southwestern Colorado. As they report in a new paper in the journal Global Change Biology, one tree species shuts down production and conserves water, while the other alters its physiology to continue growing and using water.


Trembling aspen at the study site.

Credit: Leander Anderegg

As the entire western United States becomes warmer and drier through man-made climate change, these findings shed light on how woody plants may confront twin scourges of less water and hot weather.

The authors, UW biology graduate student Leander Anderegg and biology professor Janneke Hille Ris Lambers, wanted to understand if different tree species employ similar coping strategies for drought, and how these strategies would affect their future ranges in a warmer and drier climate. They compared how two common tree species differ in terms of shape, growth rate and physiology across wet and dry portions of their native ranges.

"We really wanted to identify the entire suite of strategies that a plant can use to grow in drier environments, as well as which of these strategies each tree would employ," said Hille Ris Lambers.

Along the slopes of the La Plata Mountains in Colorado's San Juan National Forest, dry and hot conditions at lower elevations limit tree growth and survival. The ponderosa pine (Pinus ponderosa) grows along these lower elevations. Higher up the slopes, trembling aspens (Populus tremuloides) dominate, and the lowest point of the aspen's range overlaps with the higher reaches of the ponderosa pine.

In the summer of 2014, Anderegg and a team of UW undergraduates collected leaf, branch and tree ring samples of both trees at the extremes of these ranges to learn how they adapted to drought conditions, measuring qualities like growth rate and water tension within the woody tissue.

Anderegg discovered that the trembling aspen and ponderosa pine adopt opposite strategies to cope with drought, with implications for their range and survival.

"On average, this region has already warmed up over 1.5 degrees Fahrenheit in the last 30 years," said Anderegg. "And what were once 100-year droughts are expected to become more frequent in the coming centuries."

The ponderosa pine used a strategy of "drought avoidance" by conserving water, especially by shutting the tiny openings on its leaves to prevent water loss and slowing growth. The trembling aspen, in contrast, deployed strategies that would allow it to keep growing -- at least for a while -- during drought, with no change to water conservation strategies.

"On the dry end of their range, the trembling aspens are relatively short with these really fat leaves," said Anderegg. "Internally, they also grow really strong xylem vessels, which move water inside of the tree. As a consequence, they are much denser and they also grow slower."

These strategies may influence the contraction of each tree species' range over time. The trembling aspen's push to grow might make it more vulnerable to severe or prolonged drought, especially at its dry lower range. Anderegg believes the aspen's range might shrink in "fits and starts" as a hotter a drier climate settles in. A severe drought in 2002, he notes, already killed off large numbers of trembling aspen at the study site.

The ponderosa pine's strategy of "drought avoidance" might mean that its range will contract more gradually than the trembling aspen's, the authors note. These differences in adaptation will reshape forest ecosystems in the face of climate change, they believe. Anderegg and Hille Ris Lambers would like to identify the tree life stages most vulnerable to drought, which might affect how quickly their ranges contract, and what forest policymakers could do to try to cope with these changes.

"If we know how the forests will change, we can hopefully manage things so that we don't lose the things we love and rely on -- things like air and water purification, erosion control and forest biodiversity," said Anderegg. "We'd like to be able to mitigate some of the negative effects to this vast public resource and keep climate change from being hugely detrimental."

###

Their research was funded by the UW Biology Edwards Grant, the Charles Redd Center for Western Studies, Sigma Xi, the American Alpine Club and the National Science Foundation.

For more information, contact Anderegg at 541-790-1096 or ldla@uw.edu and Hille Ris Lambers at 206-543-7389 or jhrl@uw.edu.

Grant numbers: DGE-1256082 (NSF).

Media Contact

James Urton
jurton@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

James Urton | EurekAlert!

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>