Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the trail of the epigenetic code

12.10.2010
Test system on Drosophila should provide the key to histone function. The genetic inherited material DNA was long viewed as the sole bearer of hereditary information.

The function of its packaging proteins, the histones, was believed to be exclusively structural. Additional genetic information can be stored, however, and passed on to subsequent generations through chemical changes in the DNA or histones.

Scientists from the Max Planck Institute for Biophysical Chemistry in Göttingen have succeeded in creating an experimental system for testing the function of such chemical histone modifications and their influence on the organism. Chemical modifications to the histones may constitute an "epigenetic histone code" that complements the genetic code and decides whether the information from certain regions of the DNA is used or suppressed. (EMBO reports, November 1, 2010, advance online publication)

How do you get a two-metre-long DNA thread into the cell nucleus? By winding it into a ball, of course! The DNA is wound around proteins known as histones, becoming 50,000 times shorter as a result. Other proteins then aggregate on it to form chromatin and, finally, the chromosomes. The latter are the product of an ingenious packaging trick. The five types of histones (H1, H2A, H2B, H3 und H4) fulfil even more tasks, however, and this is what makes them so fascinating. Histones can have small chemical attachments, such as acetyl, methyl and phosphate groups, in different places. These cause the opening of the chromatin, for example, and hence enable the genetic information to be read. Conversely, certain areas of the DNA molecule can be deactivated and rendered unreadable through other modifications, such as the binding of proteins. Scientists refer to this process as "gene silencing". "The histone modifications can intervene in the control of gene activity in this way and, as a result, complement the genetic code," explains Herbert Jäckle, Director of the Max Planck Institute for Biophysical Chemistry in Göttingen.

Every time a cell divides, this modification pattern of the histones is inherited by the daughter cells. The scientists assume that this epigenetic inheritance is controlled by a cell-specific or organ-specific "histone code". "This decides whether the cell machinery has access to the DNA-coded genes or whether the access is blocked," says Jäckle. The scientists would very much like to crack this code: for the production of the histones, hundreds of gene copies are stored in the genome of higher organisms. Therefore, up until now, it appeared to be impossible to switch off these gene copies and replace them with genetically-modified histone variants. Researchers could only create a test system if they managed to do this: if these variants lack certain docking sites, for example for chemical groups, certain modifications to the histones could be prevented and it would then be possible to investigate the extent to which the absence of these modifications leads to diagnosable defects in the organism.

The Max Planck researchers in Göttingen have now succeeded in developing a new method for researching the function of all histone modifications. The cell biologists removed all of the histone genes from the genome of the fruit fly Drosophila melanogaster. As a result, the cells could no longer divide. As occurs with normal cell division, the organism’s genome is still doubled through DNA synthesis but the cell then remains at a standstill in the division cycle and the organism dies. The situation normalises progressively, however, with the increasing number of copies of the four histone genes produced: "Flies with twelve copies of the histone gene cluster ultimately survive and are capable of reproducing," explains Jäckle’s colleague and project leader Alf Herzig.

It had already been established for multicellular organisms that several copies of the histone gene are required for the organism to survive. However, the results obtained by the researchers also indicate that the cell realises during division that histones are lacking, and the division of the cell is then halted despite the fact that DNA has already been doubled - as is the case during all cell division processes. "Communication paths clearly exist between the histone production process and the cell division machinery," says Ufuk Günesdogan, a doctoral student in the department. Most importantly, the researchers now have a test system at their disposal into which histone variants can be channelled for the gradual experimental examination of the function of histone modification and, ultimately, the histone code in the organism. It can only be a matter of time now until the code is finally cracked.

Michael Frewin | alfa
Further information:
http://goto.mpg.de/mpg/news/20101011/

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>