Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards universal influenza vaccines – is Neuraminidase underrated?

22.06.2018

Influenza vaccines contain the viral surface proteins hemagglutinin and neuraminidase. While up to now, the constantly changing hemagglutinin has been considered the main protective antigen, and thus influenza vaccines are adjusted for hemagglutinin content, the more strongly conserved neuraminidase has now aroused the interest of scientists. Researchers at the Paul-Ehrlich-Institut have shown that the potential of the neuraminidase to confer a broader protection against influenza strains of the same subtype is higher than previously thought. Journal of Virology reports on the results in its online version of 20 June 2018.

Influenza (the flu) is a serious infectious disease. Seasonal influenza epidemics cause 250,000 to 500,000 deaths world-wide each year, and the annual flu season results in considerable disease burden in Germany. The seasonal influenza epidemics are caused by different subtypes of the influenza A or by influenza B viruses. These influenza A virus strains differ – among other things – in their surface proteins hemagglutinin and neuraminidase.


Influenza viruses

Source: Boller/Paul-Ehrlich-Institut

The currently authorised inactivated vaccines against seasonal influenza are primarily designed to induce an immune response against hemagglutinin. For this purpose, the marketing authorisation specifies how much hemagglutinin antigen must be contained in the respective product.

The disadvantage of this antigen is that it often changes its surface structure in the course of an influenza season, leading to a reduction or loss of protection conferred by the seasonal influenza vaccines. This is one reason why annual adaptations of the strains in the vaccines are required and it is necessary to get a flu shot each year.

For neuraminidase, this situation is different: This protein is more stable, i.e. it less frequently acquires changes in its antigenicity. Up to now, however, its immunogenic potential – the ability to contribute to a protective immune response – has received little attention. This is the reason why no defined amounts of neuraminidase in influenza vaccines are required in today’s influenza vaccines.

Professor Veronika von Messling, head of the Veterinary Medicine Division at Paul-Ehrlich-Institut and her research team in collaboration with researchers of the German Centre for Infection Research (DZIF) and the Institute for Virology and Immunology at Mittelhäusern, Switzerland, have studied the potential of the neuraminidase antigen to trigger an immune response and confer protection against infection with different strains of the same subtype.

For their studies, they used the vesicular stomatitis virus (VSV) as vector vaccine to induce an immune response against hemagglutinin and neuraminidase proteins of various influenza virus strains in mice or ferrets. They found that neuraminidase-vaccinated animals were protected as effectively as animals vaccinated with the hemagglutinin protein against the matched influenza strain.

However, the neuraminidase-based vaccines also provided partial protection against influenza viruses with a different hemagglutinin subtype as long as they carried the same neuraminidase subtype. This protection could be predicted by measuring levels of cross-reactive neuraminidase-inhibiting antibody titres.

“Our results suggest that neuraminidase antigens have the potential to contribute to the development of influenza vaccines with broader protection,” stated Professor von Messling when explaining the results. She continued that in the next step, they are planning to optimise the neuraminidase protein to induce a protective immune response against all viruses of the same sub-type. Such optimised neuraminidase antigens could then be used to improve the protective effect of today’s influenza vaccines.

Original publication:
Walz L, Kays SK, Zimmer G, von Messling V (2018): Sialidase-Inhibiting Antibody Titers Correlate with Protection from Heterologous Influenza Virus Strains of the Same Neuraminidase Subtype.
J Virol Jun 20 [Epub ahead of print].
DOI: 10.1128/JVI.01006-18


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://jvi.asm.org/content/early/2018/06/07/JVI.01006-18.abstract - Abstract of the publication
https://www.pei.de/EN/information/journalists-press/press-releases/2018/11-towar... - this press release on the Paul-Ehrlich-Institut Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>