Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny RNA molecules control labor, may be key to blocking premature birth

16.11.2010
Tiny molecules called microRNAs act together with hormones to control the onset of labor, raising the prospect that RNA-based drugs might be able to prevent premature labor, researchers at UT Southwestern Medical Center have discovered in a preclinical study.

"With these findings, we understand better the system that controls labor, so with future research we might have the potential to manipulate it and prevent preterm birth," said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology at UT Southwestern and senior author of the study, which appears in an online issue of the Proceedings of the National Academy of Sciences.

Using pregnant mice as well as human uterine tissue, the researchers uncovered a feedback cycle involving microRNAs, proteins called ZEB1 and ZEB2, and the pregnancy-maintaining hormone progesterone, as well as genes and other factors that control contraction of the uterus.

"We've been struggling for a long time to understand how progesterone keeps the uterus from contracting during most of pregnancy," Dr. Mendelson said. "Our findings indicate that progesterone controls a family of microRNAs whose levels dramatically increase right before labor. At the same time, levels of the microRNAs' targets, the ZEB proteins, decrease. This enables uterine contractions."

... more about:
»B protein »Medical Wellness »RNA »Tiny plants »ZEB1 »ZEB2

MicroRNA is one form of RNA, a chemical cousin of DNA. MicroRNAs interact with other protein-making molecules in cells, helping to fine-tune the expression of networks of genes and control cell function, Dr. Mendelson said.

In the new study, the researchers measured microRNA levels in the uteri of mice in mid-pregnancy and near labor. As labor approached, the level of a group of microRNAs called the miR-200 family greatly increased. When the researchers artificially stimulated premature labor, the miR-200 levels also increased.

The miR-200s block the production of two proteins called ZEB1 and ZEB2. In contrast, progesterone directly increases ZEB1 levels. The researchers uncovered a feedback cycle involving all these factors that prevents uterine contraction as long as progesterone is present.

"We found that during pregnancy, progesterone acts on the feedback loop to keep the microRNA levels down and the ZEBs up," said Nora Renthal, Medical Scientist Training Program student and lead author of the study. "The ZEBs, in turn, inhibit contraction-associate genes. But then, just prior to labor, there's a switch. Progesterone action decreases; the ZEBs are suppressed; the miR-200s increase; and the contraction-associated genes are turned on."

The researchers directly tested the contractility of cultured human uterine cells containing low or high levels of ZEB1 or ZEB2. In the presence of oxytocin, uterine cells with low levels of ZEBs contracted, while those with high levels did not, mirroring what happened in the pregnant mice.

While the study shows that the miR-200 family might be a likely therapeutic target to fight premature labor, the microRNAs and their interaction with the ZEB proteins also are known to play a role in cancer, so drug development would have to be approached very carefully, Dr. Mendelson said.

Other UT Southwestern researchers involved in the study were Dr. Chien-Cheng Chen, postdoctoral researcher in biochemistry; Koriand'r Williams, MSTP student; Dr. Robert Gerard, associate professor of internal medicine; and Dr. Janine Prange-Kiel, assistant professor of cell biology.

The study was funded by the National Institutes of Health and the March of Dimes Birth Defects Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: B protein Medical Wellness RNA Tiny plants ZEB1 ZEB2

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>