Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is crucial from the brain to the spinal cord

09.05.2018

Neuroscientists from the University of Tübingen use transcranial magnetic stimulation to investigate the interaction of nerve cells in the brain and spinal cord

Just a slight movement of the hand is an intricate concert of interactions between nerve cells. For a signal from the brain to reach the spinal cord and then the muscle, different neuronal networks must find a common rhythm.


Neurosurgeon Professor Alireza Gharabaghi and his team have broken down this complex process in a study at the University of Tübingen. A better understanding of such processes can help to develop new therapies for patients with hand paralysis. The findings were published in the journal Cerebral Cortex.

Brushing our teeth, drinking coffee or using a smartphone: We use our hands naturally and without thinking while going about our lives. It is different for people who are paralyzed after a stroke or accident, causing signals transmitted from the brain along the spinal cord to the muscles to become out of sync.

This is why we need to understand the exact rhythm in which the nerve cells in the motor system normally communicate with each other in order to be able to restore this rhythm even after damage to the nervous system.

Transcranial magnetic stimulation (TMS), a non-invasive and painless method of diagnosis and treatment, is particularly suitable for this purpose. TMS allows the activity of nerve cells in the brain and spinal cord to be investigated without contact. A magnetic field generates a pulse above the head; neuronal signals are transmitted from nerve cells to nerve cells until, for example, they reach the hand and trigger movement.

Simultaneous electrical recordings with electroencephalography (EEG) and electromyography (EMG) can be used to determine the state of activity of the nerve cells when they communicate particularly well with each other.

Alireza Gharabaghi’s team has now been able to show that two different neuronal networks, which oscillate in different rhythms, are particularly important for interaction between the brain and spinal cord: The first network occurs in the motor areas of the left and right hemispheres of the brain and oscillates at a frequency of 14-17 Hz and the second oscillates mainly between the brain and the spinal cord at a frequency of 20-24 Hz.

Timing is crucial in both networks: Impulses must arrive exactly to the millisecond so that they are passed on optimally to the hand. “These findings can help us to develop more targeted therapies for people with paralysis of the hand,” says Gharabaghi. Further studies are planned to investigate a clinical application for stroke patients.

Publication:
Khademi F, Royter V, Gharabaghi A. Distinct Beta-band Oscillatory Circuits Underlie Corticospinal Gain Modulation. Cerebral Cortex. 2018 Apr 1;28(4):1502-1515.doi: 10.1093/cercor/bhy016
https://academic.oup.com/cercor/article/28/4/1502/4836787

Contact:
Prof. Dr. med. Alireza Gharabaghi
University of Tübingen / Faculty of Medicine
University Hospital / Functional and stereotactic neurosurgery
Phone: +49 7071 29-85197
alireza.gharabaghi@uni-tuebingen.de

Antje Karbe | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

Further reports about: Cortex TMS brain and spinal cord magnetic field nerve cells paralysis spinal cord

More articles from Life Sciences:

nachricht Structure of a mitochondrial ATP synthase
19.11.2019 | Science For Life Laboratory

nachricht Mantis shrimp vs. disco clams: Colorful sea creatures do more than dazzle
19.11.2019 | University of Colorado at Boulder

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>