Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sweet side of reproductive biology

20.11.2018

Dummerstorf scientists look for sugars that can modulate the immune System

At present, sugar is under general suspicion of being responsible for many widespread diseases and health problems of mankind, especially in the industrial nations. These are mostly sugars made from glucose or fructose, like our household sugar sucrose. However, sugar is more than just a pure source of energy.


PD Dr. Sebastian Galuska (39) with the body's own sugar polysialic acid.

Photos/Picture credits: FBN


Doctoral student Marzia Tindara Venuto with fish eggs in a Petri dish.

Photos/Picture credits: FBN

The body itself produces a whole battery of complex carbohydrates, which are composed of a wide variety of monosaccharides. Perhaps the most prominent of these is the sugar polymer heparin, whose use in the inhibition of blood coagulation in medicine has become indispensable.

At the Leibniz Institute for Farm Animal Biology in Dummerstorf, the junior research group "Glycobiology" headed by Sebastian P. Galuska has been researching the role of sugar molecules in reproduction with great success since 2016. Glycobiology is the science of the structure, biosynthesis and biology of the body's own sugar chains (saccharides or glycans).

"Together with national and international cooperation partners, we are investigating the role of complex sugar molecules in reproductive immunology, as numerous studies show that these glycans are used as a kind of ID card by living organisms to identify themselves in front of cells of the immune system. All our cells are coated with a sugar layer consisting of a large number of different glycoconjugates," explains group leader Sebastian P. Galuska.

After sexual intercourse, the immune system in the female reproductive tract is activated, which should actually lead to the killing of foreign invaders, i.e. the sperm, and thus to infertility. However, there are numerous molecules in the ejaculate and on the surface of the sperm that can influence the immune system. For example, if certain sugar molecules are missing on the surface of sperm, their "ID card" is faulty.

As a result, they can no longer correctly identify themselves to female immune cells and are therefore repelled. They are eaten (phagocytised) by the defence cells or trapped and killed by so-called "neutrophil extracellular traps".

"Our focus is to identify naturally occurring sugar structures, e.g. on sperm or in seminal fluid, which can specifically influence mechanisms of the immune system. The search for such sugar molecules has now been extended to milk and fish.

The Justus Liebig University of Gießen, the Hanover Medical School, the State Research Institute for Agriculture and Fisheries M-V in Born, the University of Natural Resources and Applied Life Sciences Vienna (Austria), the University College Dublin (Ireland) and the universities in Pécs (Hungary) and Lille (France) are involved in the search.

DNA nets as traps for sperms
The so-called "neutrophil extracellular traps" are also in focus. This is a kind of network consisting of DNA and numerous antimicrobial components. Similar to insects entering the spider web, bacteria and other pathogens are trapped and killed in the body.

In principle, this would also happen if "exogenous" sperm met female neutrophils. However, the sperm and seminal fluid are equipped with numerous biomolecules in order to escape these natural immune reactions and thus reach their destination unharmed.

Bypassing the female defensive traps
"Together, we are analysing which structural prerequisites sugar molecules on sperm have to fulfil in order to circumnavigate the many obstacles to the ovum and whether such sugar-dependent mechanisms also take place elsewhere in the body or could play a role in diseases," explained the biotechnologist.

The most diverse sugar molecules could thus be used as the body's own therapeutics to develop biomedical applications. It would be conceivable to use such natural sugar chains in artificial insemination so that more sperm cells can overcome the 'defence wave' of the female immune system and the fertilisation probability can be increased.

Since the increased formation of "neutrophil extracellular traps" also has a negative influence on numerous diseases, such as blood poisoning (sepsis), the use of sugar polymers is also a promising innovative possibility here.

"For example, we were able to show that a linear sugar polymer consisting of the sugar component N-acetylneuraminic acid binds histones in "neutrophil extracellular traps" and can be used as a molecular anchor to e.g. attach therapeutic nanoparticles to such structures of inflammatory foci. Sebastian P. Galuska's junior research group was able to identify this polymer, which is known as polysialic acid, as a soluble form in ejaculate but also bound to sperm.

Overall, the results of basic research at the Leibniz Institute for Farm Animal Biology in this area are also of great interest for human medicine, especially in immunology as well as transfusion and reproductive medicine.

For top research at FBN, the young scientists have modern equipment at their disposal, including the latest generation of mass spectrometers and laser scanning microscopes for live observation of the formation of such "neutrophile extracellular traps".

The Leibniz Association connects 93 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services.

The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz institutions collaborate intensively with universities – in the form of “Leibniz ScienceCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad.

They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the importance of the institutions for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 19,100 individuals, including 9,900 researchers. The entire budget of all the institutes is approximately 1.9 billion Euros.
http://www.leibniz-association.eu

Leibniz Institute for Farm Animal Biology (FBN)
Wilhelm-Stahl-Allee 2, 18196 Dummerstorf
Director: Prof. Dr. Klaus Wimmers
T +49 38208-68 600
E wimmers@fbn-dummerstorf.de

Institut for Reproductive Biology
Head PD Dr. Jens Vanselow
T +49 38208-68 750
E vanselow@fbn-dummerstorf.de
Junior Research Group „Glykobiologie“
Head PD Dr. Sebastian Galuska
T +49 38208-68 759
E galuska.sebastian@fbn-dummerstorf.de

Scientific Organisation: Dr. Norbert K. Borowy
Wilhelm-Stahl-Allee 2, 18196 Dummerstorf
T +49 38208-68 605
E borowy@fbn-dummerstorf.de
http://www.fbn-dummerstorf.de

Norbert K. Borowy | idw - Informationsdienst Wissenschaft

Further reports about: Biology FBN immune immune system reproductive biology sperm sugar molecules

More articles from Life Sciences:

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

nachricht Stress testing 'coral in a box'
09.07.2020 | University of Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Record efficiency for printed solar cells

09.07.2020 | Power and Electrical Engineering

Rock 'n' control

09.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>