Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sweet potato and it´s evolutionary traces

28.08.2017

The sweet potato is getting more and more popular in our local kitchen. The relationship to our normal potato is distant but nevertheless the usage of these two ingredients, like mashed or as fries, is quite similar. How astonishing complex the genome of the sweet potato is was revealed now in the journal Nature Plants by scientists from the Chenshan Botanical Garden (CSBG) in Shanghai, the Max Planck Institute for Molecular Genetics (MPIMG) in Berlin, the Shanghai Institute of Plant Physiology and Ecology (SIPPE), the Max Planck Institute of Molecular Plant Physiology (MPIMP) in Potsdam and the Tai’an Academy of Agricultural Sciences (TAAS) in Shandong.

Besides the research in model plants like Arabidopsis thaliana, studies in crop plants is focused by many scientists worldwide. Goals are to gain basic knowledge about different plants as well as reaching breeding aims like the improvement of yield or a higher resistance against changing environmental conditions. In regard to the growing world population these aims are important steps for future food assurance.


The hexaploid sweet potato has six copies of each chromosome.

Jun Yang

The unraveling of the plant genome is the first step for a better understanding. Some of Germany´s most important crop plants are potato and wheat which hence are both well studied and characterized. Within the following study a better understanding of another important crop plant was achieved.

Researchers from five different research institutes in China and Germany were able to sequence the complete genome of the sweet potato Ipomoea batatas. This plant belongs to the family Convolvulaceae and with a production of more than 100 million tons being the seventh most important crop in the world and the fourth most significant crop of China.

In advance it was already predicted that the sweet potato, having 90 chromosomes and being a hexaploid organism, would be no easy species for a complete sequencing project. The amount of chromosomes is high compared to many other plants but the phenomenon of polyploidy can be found as well in many other plants as for example in the hexaploid wheat.

Polyploidy is characterized by having more than a normal diploid set of chromosomes (2n) in the genome, in the case of sweet potato and wheat each homologous chromosome is present six times. How is a duplication of chromosomes possible and what is the result for the plants which is affected?

A whole-genome duplication event can be caused by an incorrect separation of the chromosomes within the meiosis phase. Reasons for this malfunction are manifold and can include spontaneous mutations, poison or even just environmental conditions like cold. The impact of such a polyploidization event can be severe and even lethal. Nevertheless in plant species this phenomenon can be as well neutral or positive and lead to an accelerated evolution.

A remarkable example can be found in the evolution of wheat since the hexaploid durum wheat (6n) arose from the diploid einkorn wheat (2n). This was possible by spontaneous crosses of the einkorn wheat with several diploid wild grasses which accumulated the chromosome number up to the current hexaploid state in the durum wheat.

In the current issue of Nature Plants the researchers show that the nowadays sweet potato has gone through a similar evolution 500.000 years ago. Ancestors have been a diploid and a tetraploid plant which cross lead to the hexaploid Ipomoea batatas. They developed a novel haplotyping method with which they are able to predict the origin of the single chromosomes.

Furthermore they could show that quite a number of genes have accumulated deleterious mutations on different alleles. This leads to the assumption that the selection pressure on the redundant chromosomes is much lower and hence that the ploidization event can drive an evolutionary advantage. In other words: due to the existence of six instead of two copies of the genome the accumulation of deleterious mutations is without a negative impact for the sweet potato.

Contact
Prof. Alisdair Fernie
Max Planck Institute of Molecular Plant Physiology
Phone +49331/567 8211
fernie@mpimp-golm.mpg.de

Dr. Jana Dotzek and Dr. Ulrike Glaubitz
Public Relations Officers
Max Planck Institute of Molecular Plant Physiology
Phone +49331/567 8211
pr@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Jun Yang, M-Hossein Moeinzadeh, Heiner Kuhl, Johannes Helmuth, Peng Xiao, Stefan Haas, Guiling Liu, Jianli Zheng, Zhe Sun, Weijuan Fan, Gaifang Deng, Hongxia Wang, Fenhong Hu, Shanshan Zhao, Alisdair R Fernie, Stefan Boerno, Bernd Timmermann, Peng Zhang & Martin Vingron. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants, 2017; DOI: 10.1038/41477-017-0002.

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2154967/sweet-potato

Dr. Ulrike Glaubitz | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>