Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 'Signal Cell' relaying microbiota signals discovered

27.11.2019

Microorganisms are considered as dirty organism that threaten our health, decay food and cause inconvenience in our daily life. However, they are playing a critical role in making nutrients by metabolizing food, allowing all living creatures to live on. Especially, there are 2,000 kinds of microorganisms and several hundred trillions in figures living in our body. Most of these microorganisms live in digestive tracts but their effect is shown in our entire body. Recently, the research team of POSTECH (Pohang University of Science and Technology, President Moohwan Kim) discovered how microbiota transmit signals to entire body and control hematopoiesis in the bone marrow.

Professor Seung-Woo Lee, Research Professor Yunji Park, Master/PhD integrated program students, Seungwon Lee and Hyekang Kim of Division of Integrative Biosciences and Biotechnology from POSTECH described the mechanism how microbiota signals are sent to different organs.


CX3CR1+ mononuclear cells (colored in green) are contacting hematopoietic progenitors (colored in purple) in the bone marrow. When CX3CR1+ mononuclear cells recognize the microbiota signals, they produce inflammatory cytokines which expedite the hematopoiesis.

Credit: POHANG UNIVERSITY OF SCIENCE & TECHNOLOGY (POSTECH)

Also, they utilized imaging research to prove that CX3CR+ mononuclear cells contact hematopoietic progenitors for the first time in history. Their research is introduced as a featured content in the journal of the American Society of Hematology, Blood.

Recent researches on microorganism concluded that microbiota control biological phenomenon not only in digestive tracts but also in lung, liver, brain, bone marrow and other organs. But, none of them were able to define a mechanism for relaying microbiota signals to entire body or for producing immune cells by receiving microbiota signals.

Professor Lee and his research team focused on the fact that the microbiota regulate the immune system of our body by controlling hematopoiesis in the bone marrow to produce white blood cells. In this process, the team discovered that the microbiota signal including bacterial DNA is transferred to the bone marrow through bloodstream and CX3CR1+ mononuclear cells in the bone marrow recognize this signal.

They explained that when CX3CR1+ mononuclear cells recognize microbiota signals, they release signal substances called cytokines which control and stimulate body's defense system through the signal transduction. They also explained that cytokines control the number of hematopoietic progenitors or stimulate differentiation into myeloid lineages to make blood cells.

Furthermore, they verified that CX3CR1+ mononuclear cells contact hematopoietic progenitors at the perivascular region and they play as a signal receiving microbiota signals.

They discovered the hematopoiesis control mechanism which is controlled by cytokines produced when CX3CR1+ mononuclear cells recognize microbiota signals transferred to the bone marrow.

Professor Seung-Woo Lee commented, "For the first time, our research describes the mechanism that had not been explained how microbiota regulate not only digestive tracts but also entire body response. It might be possible to apply this study to control immune response in other parts of a body or to treat cancer and inflammatory disease via microbiota signal pathway.

This study was financially supported by National Research Foundation of Korea, Regional Leading Research Center, and Korea Ministry of Science and ICT under BK21 Plus project.

Media Contact

Jinyoung Huh
jyhuh@postech.ac.kr
82-542-792-415

Jinyoung Huh | EurekAlert!
Further information:
http://postech.ac.kr/eng/the-signal-cell-relaying-microbiota-signals-discovered/?pageds=1&k=&c=

Further reports about: blood cells bone marrow cytokines hematopoietic microbiota mononuclear cells

More articles from Life Sciences:

nachricht Researchers discover vaccine to strengthen the immune system of plants
24.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Brain-cell helpers powered by norepinephrine during fear-memory formation
24.01.2020 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>