Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The body's street sweepers

18.12.2017

Immune system

A new study by medical researchers at LMU extends the list of tasks performed by the smallest blood cells known as platelets: At sites of infection, actively migrating platelets sweep bacteria into aggregates for disposal by phagocytic cells.


Left: Trajectory of a migrating platelet, depicted (from top to bottom) as a sequence of time-lapse images of the cell's outline. Right: As they migrate, platelets can collect bacteria into bundles (orange arrowheads).

Credit: F. Gärtner/LMU

The active role of blood platelets in immune defense has been underestimated. A new study now published by LMU medical researchers led by Dr. Florian Gärtner and Professor Steffen Massberg, shows that this cell type has a larger range of functions than previously thought. Thrombocytes are best known for their role in blood coagulation and wound-healing. But they are not only adept at patching up tears in the endothelial cell layer that lines the blood vessels.

"They are also important in defending the organism against bacterial pathogens. They have the capacity to actively migrate within the organism, to interact with pathogens and immobilize them." This is lead author Florian Gärtner's summary of the major findings of a study that has just appeared in the leading journal Cell.

Some 750 billion platelets are passively transported in the bloodstream throughout the adult human body. Platelets adhere specifically to sites in the vasculature where the endothelial cells have been damaged by binding via surface receptors to proteins in the sub-endothelial cell layer.

They then spread out on the extracellular matrix, and interact with one another to form a network that acts like a sticking plaster to seal the wound. Furthermore, they are intimately involved in initiating blood coagulation at wound sites, but also in the development of blood clots (thromboses) which can obstruct blood circulation.

In a project carried out under the auspices of the DFG-funded Collaborative Research Center (Sonderforschungsbereich) SFB 914 (which focuses on the investigation of immune cell migration in inflammation, development and disease) Gärtner, Massberg and colleagues recently developed a way to track individual platelets at the site of an inflammatory reaction for extended periods. These observations revealed an unsuspected function of this cell type.

"Not only do they attach to bacterial cells by passively sticking to the vascular wall, they are also capable of active locomotion," says Gärtner. At sites of inflammation or infection, platelets begin to actively explore their immediate environment, and when they come into contact with foreign bodies, such as invasive bacteria, they use the traction associated with locomotion to collect them into bundles, rather like street-sweepers clearing up debris. The resulting platelet-bacterial aggregates facilitate the activation of neutrophils, which engulf the trapped microbes.

The reason why the versatility of platelets has so far been overlooked may well lie in the fact that they are derived from giant precursor cells called megakaryocytes by fragmentation, and therefore lack nuclei. The work of Gärtner und Massberg demonstrates that they are nevertheless capable of undergoing dynamic shape change and active migration.

This finding has implications that extend beyond their role in immune defense, because it reveals what anucleate cells can do. "This is a very striking demonstration that the cytoskeletal apparatus responsible for cell motility does not depend on the presence of a nucleus," Gärtner says.

In addition, the new results make platelets an attractive target for drug developers searching for novel ways to treat inflammation reactions. As Gärtner points out, "one way to modulate the action of the body's immune defenses would be to inhibit the ability of platelets to migrate."

Dr. Florian Gärtner | EurekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>