Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The body's street sweepers

18.12.2017

Immune system

A new study by medical researchers at LMU extends the list of tasks performed by the smallest blood cells known as platelets: At sites of infection, actively migrating platelets sweep bacteria into aggregates for disposal by phagocytic cells.


Left: Trajectory of a migrating platelet, depicted (from top to bottom) as a sequence of time-lapse images of the cell's outline. Right: As they migrate, platelets can collect bacteria into bundles (orange arrowheads).

Credit: F. Gärtner/LMU

The active role of blood platelets in immune defense has been underestimated. A new study now published by LMU medical researchers led by Dr. Florian Gärtner and Professor Steffen Massberg, shows that this cell type has a larger range of functions than previously thought. Thrombocytes are best known for their role in blood coagulation and wound-healing. But they are not only adept at patching up tears in the endothelial cell layer that lines the blood vessels.

"They are also important in defending the organism against bacterial pathogens. They have the capacity to actively migrate within the organism, to interact with pathogens and immobilize them." This is lead author Florian Gärtner's summary of the major findings of a study that has just appeared in the leading journal Cell.

Some 750 billion platelets are passively transported in the bloodstream throughout the adult human body. Platelets adhere specifically to sites in the vasculature where the endothelial cells have been damaged by binding via surface receptors to proteins in the sub-endothelial cell layer.

They then spread out on the extracellular matrix, and interact with one another to form a network that acts like a sticking plaster to seal the wound. Furthermore, they are intimately involved in initiating blood coagulation at wound sites, but also in the development of blood clots (thromboses) which can obstruct blood circulation.

In a project carried out under the auspices of the DFG-funded Collaborative Research Center (Sonderforschungsbereich) SFB 914 (which focuses on the investigation of immune cell migration in inflammation, development and disease) Gärtner, Massberg and colleagues recently developed a way to track individual platelets at the site of an inflammatory reaction for extended periods. These observations revealed an unsuspected function of this cell type.

"Not only do they attach to bacterial cells by passively sticking to the vascular wall, they are also capable of active locomotion," says Gärtner. At sites of inflammation or infection, platelets begin to actively explore their immediate environment, and when they come into contact with foreign bodies, such as invasive bacteria, they use the traction associated with locomotion to collect them into bundles, rather like street-sweepers clearing up debris. The resulting platelet-bacterial aggregates facilitate the activation of neutrophils, which engulf the trapped microbes.

The reason why the versatility of platelets has so far been overlooked may well lie in the fact that they are derived from giant precursor cells called megakaryocytes by fragmentation, and therefore lack nuclei. The work of Gärtner und Massberg demonstrates that they are nevertheless capable of undergoing dynamic shape change and active migration.

This finding has implications that extend beyond their role in immune defense, because it reveals what anucleate cells can do. "This is a very striking demonstration that the cytoskeletal apparatus responsible for cell motility does not depend on the presence of a nucleus," Gärtner says.

In addition, the new results make platelets an attractive target for drug developers searching for novel ways to treat inflammation reactions. As Gärtner points out, "one way to modulate the action of the body's immune defenses would be to inhibit the ability of platelets to migrate."

Dr. Florian Gärtner | EurekAlert!

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>