Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test for safer biomedical research results

03.08.2009
In cancer research, as in most other biomedical sciences, they are playing a key role: living cells, kept in sterile plastic containers with red culture media populating incubators in laboratories around the world.

But do researchers always know what is really living in their culture dishes? Under the microscope, different cell lines are almost impossible to distinguish from each other. When these important research objects stop growing without apparent reason – is it because of the manipulations by the scientists or because of an invisible viral or bacterial infection?

Contaminations with other cell lines or pathogenic agents are a common and well-known problem. Often they are the reason why cell experiments fail to produce useable or reproducible results. Even worse, laboratory staff can get infected with dangerous pathogens from a cell culture.

To make those important cell culture experiments safer, DKFZ researchers Dr. Markus Schmitt and Dr. Michael Pawlita have developed a test which is able to identify 37 different cell contaminations in a single run. The researchers have tested the system in over 700 samples from different research labs and have now published their results.

The method called "Multiplex cell Contamination Test" (McCT) detects not only wide-spread viruses but also a number of mycoplasmas, which are considered the major contaminators of cell cultures. In addition, the test checks the cells for their origin. Thus, if dog genetic material is found in what are supposed to be monkey cells, then a contamination of the cell culture is obvious. The test also includes detection of commonly used standard cell lines. Contamination with the fast-growing cancer cell line HeLa, for example, is a dreaded source of false results.

Pawlita and Schmitt found contaminations in a high percentage of cell samples. Twenty-two percent of tested cultures were contaminated with one of the various types of the parasitic bacterium called mycoplasma. "What we noticed about the results," says Markus Schmitt, "was that contaminations were frequent in some laboratories, while others sent in cultures that were constantly clean. Thus, care in laboratory work seems to play an important role."

The test is highly specific and needs no more than ten copies of foreign DNA in the cell sample to be positive. This is a sensitivity which is comparable to or even higher than those of previously available commercial mycoplasma tests. McCT results are reproducible to 99.6 percent. The method is based on multiplication of specific DNA sequences by polymerase chain reaction and subsequent detection of the multiplied DNA regions. A special advantage of the new test is that it can be carried out on a high-throughput basis. The DKFZ researchers can manage up to 1,000 tests per week.

Schmitt und Pawlita offer the service to external scientists and research institutes via the Steinbeis Transfer Center "Multiplexion", a DKFZ spin-off. If you are interested, please visit www.multiplexion.com for more information about the conditions.

Markus Schmitt und Michael Pawlita: High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Research 2009, DOI: 10.1093/nar/gkp581

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>