Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel technique reveals dynamics of telomere DNA structure

18.01.2013
Chromosome-capping telomeres are a potential target for anti-cancer drugs

Biomedical researchers studying aging and cancer are intensely interested in telomeres, the protective caps on the ends of chromosomes. In a new study, scientists at UC Santa Cruz used a novel technique to reveal structural and mechanical properties of telomeres that could help guide the development of new anti-cancer drugs.

Telomeres are long, repetitive DNA sequences at the ends of chromosomes that serve a protective function analogous to that of the plastic tips on shoelaces. As cells divide, their telomeres get progressively shorter, until eventually the cells stop dividing. Telomeres can grow longer, however, through the action of an enzyme called telomerase, which is especially active in cells that need to keep dividing indefinitely, such as stem cells. Researchers have also found that most tumor cells show high telomerase activity.

Michael Stone, an assistant professor of chemistry and biochemistry at UC Santa Cruz, said his lab is particularly interested in the folding and unfolding of a DNA structure at the tail end of the telomere, known as a G-quadruplex, because it plays a key role in regulating telomerase activity.

"Most cancer cells use telomerase as one mechanism to maintain uncontrolled growth, so it is an important target for anti-cancer therapeutics," Stone said. "The G-quadruplex structures of telomere DNA inhibit the function of the telomerase enzyme, so we wanted to understand the mechanical stability of this structure."

Xi Long, a graduate student in Stone's lab, led the project, which involved integrating two techniques to manipulate and monitor single DNA molecules during the unfolding of the G-quadruplex structure. A "magnetic tweezers" system was used to stretch the DNA molecule, while a fluorescence microscopy technique was used to monitor small-scale structural changes in the DNA. The results, published in Nucleic Acids Research, showed that a relatively small structural displacement causes the G-quadruplex to unfold.

"Unlike other DNA structures, the G-quadruplex structure is fairly brittle. It takes very little perturbation to make the whole thing fall apart," Stone said. "We also found that the unfolded state has a highly compacted conformation, which tells us that it still has interactions that favor the folding reaction."

These findings have implications for understanding the molecular mechanisms of telomere-associated proteins and enzymes involved in the unfolding reaction, as well as for rational design of anti-cancer drugs, Stone said. Small molecules that bind to and stabilize telomere DNA G-quadruplexes have shown promise as anti-cancer drugs.

The integration of fluorescence measurements and magnetic tweezers is a powerful method for monitoring DNA structural dynamics, and as biophysical techniques go, it is not hard to implement, Stone said. His lab worked with DNA molecules containing the G-quadruplex sequence from human telomere DNA, attaching one end of the DNA to a glass slide and the other end to a tiny magnetic bead. A magnet held above the sample pulled on the bead, exerting a stretching force on the DNA molecule that varied according to how close the magnet was to the sample.

At the same time, the researchers used a fluorescence technique called single-molecule FRET (Förster resonance energy transfer) to monitor small-scale structural changes in the DNA. "FRET can be thought of as a molecular ruler," Stone said. As energy from one fluorescent dye molecule is transferred to a second dye molecule, the efficiency of the energy transfer can be measured in real time. The dye molecules can be coupled directly to the DNA molecule at specific sites, allowing researchers to monitor the molecular dynamics of the system as it is being manipulated by the magnetic tweezers.

"You don't have to be a specialist to use this technique, so it can be easily transferred to other labs and broadly employed in these kinds of studies," Stone said.

In addition to Stone and first author Xi Long, the coauthors of the paper in Nucleic Acids Research include UCSC graduate student Joseph Parks and visiting researcher Clive Bagshaw. This research was funded by the National Institutes of Health (grant #GM095850-02) and the National Science Foundation (grant #DGE 0809125).

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>