Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Identifies Important Regulators of Immune Cell Response

08.09.2014

In a collaborative study, scientists from the Florida campus of The Scripps Research Institute (TSRI) and the La Jolla Institute for Allergy and Immunology have developed a more effective method to determine how immune cells called T cells differentiate into specialized types of cells that help eradicate infected cells and assist other immune cells during infection.

The new approach, published recently by the journal Immunity, could help accelerate laboratory research and the development of potential therapeutics, including vaccines. The method may also be used to identify the genes that underlie tumor cell development.


Photo courtesy of The Scripps Research Institute.

Matthew Pipkin, PhD, is an associate professor at The Scripps Research Institute, Florida campus.

There are approximately 40,000 genes in each of our cells, but functions for only about half of them are known. The classical approach to determine the function of individual genes is slow.

“Typically, studies to identify differentiation players are done one gene at a time,” said Associate Professor Matthew Pipkin of TSRI, who led the study with Professor Shane Crotty of the La Jolla Institute for Allergy and Immunology. “Our study describes a novel method that can ‘screen’ entire gene families to discover the functions of a large number of individual genes simultaneously, a far more efficient methodology.”

... more about:
»Allergy »Cell »Immunology »Jolla »R01 »Scripps »TSRI »factors »genes »mixture »previously

In the new study, the team examined genes that regulate the specialization of T cells into “effector” cells that eliminate pathogens during infection and “memory” cells that survive long-term to maintain guard after the first infection has been cleared, keeping the same pathogens from re-infecting the body after it has fought them off once.

In their experiments, Pipkin, Crotty and their colleagues created a mixture of T cells, identical except that the expression of a different gene was interrupted in each cell so the pool of cells represented disruption of a large set of genes. The researchers then assessed the cells’ response to lymphocytic choriomeningitis virus (LCMV). Before-and-after-infection studies revealed which cells with interrupted genes had emerged after infection; cells in which disruption of a particular gene resulted in it being lost from the mixture indicated the gene played a role in promoting the cell’s development into an antiviral T cell.

The study successfully identified two previously unknown factors that work together during T cell differentiation—Cyclin T1 and its catalytic partner Cdk9, which together form the transcription elongation factor (P-TEFb). While widely expressed throughout the body and used in a number of developmental processes, the factors were previously unknown to be important in the differentiation of both antiviral CD4 and CD8 T cells.

“One of the regulators we uncovered normally enhances effector T cell differentiation at the expense of generating memory T cells and T cells that orchestrate antibody production,” Pipkin said. “That’s one candidate that you’d want to ‘turn down’ if you wanted to create more T cells that form memory cells and promote a more effective antibody response—something that would be extremely helpful in developing a vaccine.”

The first authors of the study, “In Vivo RNA Interference Screens Identify Regulators of Antiviral CD4+ and CD8+ T Cell Differentiation,” are Runqiang Chen and Simon Bélanger of the La Jolla Institute for Allergy and Immunology. Other authors include Megan A. Frederick of TSRI; and Bin Li, Robert J. Johnston, Nengming Xiao, Yun-Cai Liu, Sonia Sharma, Bjoern Peters and Anjana Rao of the La Jolla Institute for Allergy and Immunology. See http://www.cell.com/immunity/abstract/S1074-7613(14)00272-6

This work was supported by the National Institutes of Health (RC4 AI092763, R01 AI095634, R01 CA42471, R01 072543 and U19 AI109976) and Frenchman’s Creek Women for Cancer Research.

About the Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

Eric Sauter | newswise

Further reports about: Allergy Cell Immunology Jolla R01 Scripps TSRI factors genes mixture previously

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>