Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish Researchers Question Treatment of Infertility with Stem Cells

04.02.2015

New studies by Swedish researchers at institutions including the University of Gothenburg and Karolinska Institute are questioning the notion that infertility can be treated with stem cells.

Whether or not infertility can be treated with stem cells has been a matter of debate for many years.


Professor Kui Liu

The classical theory is based on the idea that the eggs a woman has are the ones she has had from birth, but there are researchers who claim that stem cell research could lead to the creation of new eggs. If so, this would mean that infertile women, such as those who have entered the menopause, could be given new eggs.

New studies done by researchers at the University of Gothenburg and Karolinska Institute now show that the dream of successfully treating infertility with stem cells will probably not be realised. These new research studies have been published in the renowned journal Proceedings of the National Academy of Sciences (PNAS).

"Ever since 2004, the studies on stem cell research and infertility have been surrounded by hype. There has been a great amount of media interest in this, and the message has been that the treatment of infertility with stem cells is about to happen. However, many researchers, including my research group, have tried to replicate these studies and not succeeded. This creates uncertainty about whether it is at all possible to create new eggs with the help of stem cells,” says Kui Liu, a researcher at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Together with Outi Hovatta's research group at Karolinska Institute and Jan-Åke Gustafsson's research team at the University of Houston in the United States, staff at Professor Liu's laboratory have carried out experiments on mice showing that the only eggs female mice have are the ones they have from birth.

“This shows not only that the use of stem cell research in the clinical treatment of childlessness is unrealistic but also that clinics should focus on using the eggs that women have had since birth in treating infertility,” says Professor Kui Liu.

Dr. Kui Liu is a Professor at the Department of Chemistry and Molecular Biology at the University of Gothenburg. His group specialises in the study of the genetic and epigenetic regulation of female germ cell development. Research in recent years has covered both preclinical basic research and the transfer of the results generated from studies of mouse models to clinically applicable techniques for treating female infertility.

For more information, please contact:
Professor Kui Liu: Tel. (+46) 70-8887793; kui.liu@gu.se

Link to the article in the Proceedings of the National Academy of Sciences: http://www.pnas.org/content/early/2014/11/25/1421047111.abstract

Weitere Informationen:

http://www.gu.se/english/about_the_university/news-calendar/News_detail/?languag...

Ulrika Lundin | idw - Informationsdienst Wissenschaft

Further reports about: Cells Molecular Molecular Biology eggs female infertility stem cell research stem cells

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>