Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-tough seed coat keeps Michaux's sumac on critically endangered list

12.10.2011
It is one of the rarest shrubs in the southeastern United States, and for scientists trying to save it, the critically endangered Michaux's sumac (Rhus michauxii) is not cooperating.

So far botanists have exposed the hard-, thick-coated seeds of this native North American plant to boiling water, dry heat up to 284 degrees Fahrenheit and flames from a propane blowtorch to try to coax them into germination. Nothing has worked.

"Complete understanding of the germination requirements of endangered plants is an absolute requirement to effectively manage populations," Smithsonian research associate Jay Bolin and botanists Marcus Jones and Lytton Musselman write in a recent paper on this plant in Native Plants Journal.

So far, however, Michaux's sumac has not given up its secrets.

Because Michaux's sumac grows only in areas with few trees where the vegetation has been disturbed, it has long been assumed that its seeds germinate naturally following exposure to the high temperatures of a brush or forest fire. Decline of this plant has been attributed to the prevention and suppression of brush and forest fires by humans.

In Virginia it grows in only two places: on the grounds of the Virginia Army National Guard Maneuver Training Center in Fort Picket, and a mowed railway right-of-way in an undisclosed location.

In a recent series of germination experiments, the scientists exposed different sets of Michaux's sumac seeds to dry heat temperatures of 140, 176, 212, 248 and 284 degrees Fahrenheit, some sets for 5 minutes and other sets for 10 minutes. (The temperatures were determined based on maximum wildfire surface temperatures and burn times recorded in southeastern U.S. forests.)

The researchers found that temperatures above 212 degrees F. killed the seeds. Lower temperatures had virtually no impact on breaking the seed's dormancy.

The highest germination rates—30 percent—occurred after sulfuric acid was poured on Michaux's sumac seeds and allowed to scarify (dissolve and weaken) the seed coats. This finding, from an experiment done in 1996, has led the researchers to their next experiment using birds.

"We are going to feed the seeds to quail and wild turkey to determine if that breaks the seed dormancy," says Bolin, a research associate with the Department of Botany at the Smithsonian's National Museum of Natural History and an assistant professor at Catawba College in Salisbury, N.C.

Seed passage through the digestive tracts of fruit-eating birds (and exposure to the acid in the bird's stomachs) may break the physical dormancy of these seeds and help disperse them as well, the scientists write.

The paper "Germination of the federally endangered Michaux's sumac (Rhus michauxii)," authored by Jay F Bolin, Marcus E Jones (Norfolk Botanical Garden, Norfolk Va.,) and Lytton J Musselman (Old Dominion University, Norfolk, Va.) appeared in the Summer 2011 issue of Native Plants Journal.

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>