Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows machine learning can improve catalytic design

03.07.2018

Algorithm helps chemical engineers at Rice, Penn State find hidden correlations

Chemical engineers at Rice University and Pennsylvania State University have shown that combining machine learning and quantum chemistry can save time and expense in designing new catalysts.


A quantum chemical simulation (lower panel) depicts the charge transfer (blue/green) between metal atoms and an underlying support (orange). This is but one description of a catalyst's physical behavior, and researchers created a massive database by calculating 330,000 such descriptions for each of many catalysts. Machine learning was used (upper panel) to search the database for hidden patterns that designers can use to make cheaper, more efficient catalysts.

Credit: Tom Senftle/Rice University

Usage Restrictions: For news related purposes only.

"Large amounts of data are generated in computational catalysis, and the field is starting to realize that data science tools can be extremely valuable for sifting through high-volume data to look for fundamental correlations that we might otherwise miss," said Rice's Thomas Senftle, co-author of a new study published online this week in Nature Catalysis. "That's what this paper was really about. We combined well-established tools for data generation and analysis in a way that allowed us to look for correlations we wouldn't otherwise have noticed."

A catalyst is a substance that accelerates chemical reactions without being consumed by them. The catalytic converters in automobiles, for example, contain metals like platinum and palladium that aid in reactions that break down air pollutants. Catalysts are a mainstay of the chemical and pharmaceutical industries, and the global market for catalysts is estimated at $20 billion per year.

The metals used in catalytic converters are typically part of a wire mesh. As hot exhaust passes through the mesh, the metal atoms on the surface catalyze reactions that break apart some noxious molecules into harmless byproducts.

"That's a gas phase reaction," Senftle said of the catalytic converter example. "There's a certain concentration of gas-phase species that come out of the engine. We want a catalyst that converts pollutants into harmless products, but different cars have different engines that put out different compositions of those products, so a catalyst that works well in one situation may not work as well in another."

The practice of flowing reactants past a catalyst is also common in industry. In many cases, a catalytic metal is attached to a solid surface and reactants are flowed over the surface, either as a liquid or a gas. For industrial processes that make tons of products per years, improving the efficiency of the metal catalyst by even a few percent can translate into millions of dollars for companies.

"If you have a clear picture of the properties of the metal catalyst and the substrate material the metal attaches to, that allows you to basically narrow down your search at the beginning," Senftle said. "You can narrow your design space by using the computer to explore which materials are likely to do well under certain conditions."

Senftle, assistant professor in chemical and biomolecular engineering at Rice, began the newly published research while still a graduate student at Penn State in 2015, along with lead authors Nolan O'Connor and A.S.M. Jonayat and co-author Michael Janik. They started by using density functional theory to calculate the binding strengths of single atoms of many different kinds of metals with a range of metal oxide substrates.

"The binding energy between the metal and substrate is of particular interest because the stronger the bond, the less likely the metal atom is to dislodge," Janik said. "If we can control that binding energy, we can tailor the size distribution of these metal particles, and that, in turn, is going to impact the overall reaction that they can catalyze."

O'Connor said, "We were curious about the properties of individual metal atoms and oxide surfaces that made for strong interacting pairs, which is a property we can use to design robust catalysts."

Along with the list of binding energies, the team had a catalog of about 330,000 additional properties for each of the metal-substrate combinations, including factors like oxide formation energy, coordination number, alloy formation energy and ionization energy.

"The machine learning algorithm looks for the combinations of those descriptors that correlate with the observed data on binding energies," Jonayat said. "It basically allows us to ask, 'Of all of these descriptors, how can we find the ones that correlate with the observed behavior in which we're interested?"

He said identifying such correlations can streamline catalyst design by making it possible to predict how materials will behave prior to laboratory testing that can be both expensive and time-consuming. Machine learning also can identify interesting effects that are worthy of additional study.

For example, Senftle said one correlation that kept appearing in the study was the importance of the direct interaction between the catalytic metals and the metal atoms in the support. He said this was unexpected because the metals typically each have a strong affinity to bind with oxygen as opposed to binding with each other.

"Originally, the idea was that it was the oxygen that was important," Senftle said. "We were interested in determining how well these two different metals shared the oxygen. But this direct interaction between the metals themselves kept popping up in our calculations, and it played a much larger role in dictating the overall behavior of the system than we had anticipated."

Senftle said he'd like to build on the complexity of the simulations in future research.

"Here we were looking at the interactions between the metals and the supports in a pristine environment with no water molecules or impurities of any kind," he said. "In reality, catalysts are used in very complicated reaction environments, and we'd like to examine how these trends change in those settings. For example, if this were an aqueous environment, water or dissociated water would likely adsorb on the surface. Those are going to impact the interaction, because now you have another player that is sharing the electron density and sharing the surface oxygens."

###

The research was supported by the National Science Foundation (NSF). Rice supercomputing resources were provided by the NSF-supported DAVinCI supercomputer administered by the Center for Research Computing and procured in partnership with Rice's Ken Kennedy Institute for Information Technology.

A copy of the paper is available at: http://dx.doi.org/10.1038/s41929-018-0094-5

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41929-018-0094-5

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>