Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals how ‘microbial axolotl’ repairs itself

09.04.2018

In a new study, published in Current Biology this week, a research team from Uppsala University in Sweden reports new insights into the regenerative capabilities of Stentor, a single celled model organism for regeneration biology. The study used novel gene expression methods that allowed the researchers to identify over one thousand genes that are involved in the regeneration process of individual stentor cells.

Some animals, such as the axolotl salamander, can regrow new body parts in a process that involves the generation of new cells. The damaged cells will die off and the limb will regenerate through cell division, which creates new tissue. Single-celled organisms however cannot utilise this strategy, as they only comprise a single cell – hence upon significant damage, they usually die.


Ettema, Thijs J. G. et al. (2018) RNA sequencing of Stentor cell fragments reveals transcriptional changes during cellular regeneration, Current Biology, DO

Uppsala University

Yet, some single-celled organisms, such as the giant ciliate Stentor, have the rare ability to repair themselves when damaged, in a process referred to as ‘self-repair’ or ‘self-regeneration’. Whereas the ability of Stentor to self-regenerate has been known for some time, detailed knowledge about which genes play a role in this process has thus far been lacking. Now, a research team from Uppsala University has identified over a thousand genes that are involved in rebuilding a fully-fledged Stentor cell after being cut into two halves.

The Uppsala research team focused their study on the Stentor polymorphus, a trumpet-shaped ciliate which they could isolate from a pond nearby the laboratory.

“Stentor cells are huge and can be over 1 mm in length, which makes it possible to see single cells with the naked eye without using a microscope,” says Henning Onsbring, doctoral student at the Department of Cell and Molecular Biology, Uppsala University, who was the lead author of the study. “The large size makes Stentor suitable to study when you want to analyse regenerative capacity at the cellular level.”

Stentor cells have a distinct shape, with a mouth part to eat bacteria on one side, and a tail to attach to particles on the other side of the cell. Previous studies had shown that if you cut a Stentor cell in half, each cell fragment will regenerate into a fully functional cell with a mouth and tail.

This means that one half needs to regrow a mouth, while the other half has to regenerate a tail. Using a new method, the Uppsala researchers were able to identify which Stentor genes were involved in regenerating a new mouth, and which genes were responsible for building a new tail.

“The method we used involved the sequencing and quantification of RNA molecules in individual cell fragments, something that was never done before,” says Dr. Thijs Ettema, associate professor at the Department of Cell and Molecular Biology, Uppsala University, who led the study.

“Usually, such methods are only performed on model organisms for which a genome sequence is available. This was not the case for Stentor polymorphus however. We needed to tweak existing protocols and test whether we could use these to study gene expression changes in regenerating Stentor cell fragments.”

Using the newly developed protocol, Onsbring found that many more genes are involved in the regeneration of the mouth part as compared to the tail of the cell.

“The mouth part of the cell is used for feeding and represents a rather large and complex structure. Our results indicate that rebuilding this mouth structure involves roughly ten times as many genes as compared to regenerating the tail part of the cell,” says Onsbring. “We also managed to confirm observations from previous microscopy studies that suggested that cellular regeneration shares similarities with the process of cell division. We found that several genes that were previously implicated in cell division were also upregulated during various stages of regeneration.”

Finally, the Uppsala research team also identified a group of signaling proteins, known as proteins kinases, to be involved in cellular regeneration of stentor cells.

“A previous study had recently reported that the Stentor genome encodes many of these proteins kinase genes. The function of this expanded set of genes was still unclear however. If anything, we now show that many of these protein kinases are expressed during specific stages of the regeneration process. Possibly, the expansion of this group of signaling genes represented an important evolutionary step in the emergence of the ability to perform self-repair,” concludes Ettema.

For more information, please contact: Thijs Ettema, thijs.ettema@icm.uu.se, phone: +46 (0) 70 5384219 (mobile)

Weitere Informationen:

Ettema, Thijs J. G. et al. (2018) RNA sequencing of Stentor cell fragments reveals transcriptional changes during cellular regeneration, Current Biology, DOI: 10.1016/j.cub.2018.02.055
http://www.cell.com/current-biology/fulltext/S0960-9822(18)30240-9

Linda Koffmar, Uppsala University | idw - Informationsdienst Wissenschaft

Further reports about: Biology Molecular Biology cell division fragments microbial proteins regenerating

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>