Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study overturns seminal research about the developing nervous system

21.04.2017

New research by scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA overturns a long-standing paradigm about how axons -- thread-like projections that connect cells in the nervous system -- grow during embryonic development. The findings of the study, led by Samantha Butler, associate professor of neurobiology, could help scientists replicate or control the way axons grow, which may be applicable for diseases that affect the nervous system, such as diabetes, as well as injuries that sever nerves.

As an embryo grows, neurons -- the cells in the nervous system -- extend axons into the developing spinal cord. Axons are then guided to reach other areas of the body, such as the brain, to establish a functioning nervous system. It has been generally understood that various guidance cues, which are cellular molecules such as proteins, either attract or repel axon growth as the axons reach out from neurons to find their destination in the nervous system.


Left: axons (green, pink, blue) form organized patterns in the normal developing mouse spinal cord. Right: removing netrin1 results in highly disorganized axon growth.

Credit: UCLA Broad Stem Cell Research Center/Neuron

Previous research suggested that a particular guidance cue, called netrin1, functions over a long distance to attract and organize axon growth, similar to how a lighthouse sends out a signal to orient a ship from afar. However, previous research also shows that netrin1 is produced in many places in the embryonic spinal cord, raising questions about whether it really acts over a long distance. Most notably, netrin1 is produced by tissue-specific stem cells, called neural progenitors, which can create any cell type in the nervous system. Yet, it was not understood how the netrin1 produced by neural progenitors influences axon growth.

Butler and her research team removed netrin1 from neural progenitors in different areas in mouse embryonic spinal cords. This manipulation resulted in highly disorganized and abnormal axon growth, giving the researchers a very detailed view of how netrin1 produced by neural progenitors influences axons in the developing nervous system.

They found that neural progenitors organize axon growth by producing a pathway of netrin1 that directs axons only in their local environment and not over long distances. This pathway of netrin1 acts as a sticky surface that encourages axon growth in the directions that form a normal, functioning nervous system.

Butler's study is a significant reinterpretation of the role of netrin1 in nervous system formation. The results further scientists' understanding of the contribution neural progenitors make to neural circuit formation. Determining how netrin1 specifically influences axon growth could help scientists use netrin1 to regenerate axons more effectively in patients whose nerves have been damaged.

For example, because nerves grow in channels, there is much interest in trying to restore nerve channels after an injury that results in severed nerves, which is seen often in patients who have experienced an accident or in veterans with injuries to their arms or legs. One promising approach is to implant artificial nerve channels into a person with a nerve injury to give regenerating axons a conduit to grow through. Butler believes that coating such nerve channels with netrin1 could further encourage axon regrowth. Her continued research will focus on uncovering more details about how netrin1 functions and how it could be used clinically.

###

AUTHORS

Butler is the senior author of the study. The first author is Supraja Varadarajan, a graduate student in Butler's lab.

JOURNAL

The study is published today in the journal Neuron.

FUNDING

The study was funded by grants from the National Institutes of Health (DK097075, HL098294, HL114457, DK082509 HL109233, DK109574, HL119837, NS072804, NS089817, NS063999, NS085097 and HL133900), the Canadian Institutes of Health Research (MOP-97758 and MOP- 77556), Brain Canada, the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, the W. Garfield Weston Foundation, the March of Dimes Foundation (6-FY10-296 and 1-FY07-458) and the UCLA Broad Stem Cell Research Center.

Media Contact

Mirabai Vogt-James
mvogt@mednet.ucla.edu
310-983-1163

 @uclahealth

http://www.uclahealth.org/ 

Mirabai Vogt-James | EurekAlert!

Further reports about: axons nerves nervous nervous system neurons spinal spinal cord

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>