Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds cancer-fighting goodness in cholesterol

20.04.2012
A Simon Fraser University researcher is among four scientists who argue that cholesterol may slow or stop cancer cell growth.

They describe how cholesterol-binding proteins called ORPs may control cell growth in A Detour for Yeast Oxysterol Binding Proteins, a paper published in the latest issue of the Journal of Biological Chemistry.

The scientists came to their conclusion while trying to understand how cholesterol moves around inside cells in the fat's journey to cell surfaces where it reinforces their outer membrane.

"The assumption was that ORPs bind and transport cholesterol inside cells in a similar fashion to how lipoproteins bind and move around the fat outside cells through the blood stream," explains Chris Beh. The SFU associate professor of molecular biology and biochemistry co-authored this paper.

Beh and his colleagues noted that genetic changes engineered by them block the ability of ORPs to bind cholesterol but don't stop ORPs from functioning. In fact, these altered ORPs work better and activate other regulator proteins, which in turn trigger a variety of cellular processes that stimulate cell growth.

The scientists believe this happened because cholesterol-binding normally interferes with ORPs' ability to bind to another lipid or fat called PI4P, which is important for cell growth.

"That told us that ORPs probably have nothing to do with moving around cholesterol within cells," says Beh. "Rather cholesterol-binding puts the brakes on ORP's ability to bind to PI4P which, if left unchecked, could accelerate cell growth like crazy," says Beh. "Given that uncontrolled cell growth is a key feature of cancer, this means gaining a better understanding of the true purpose of cholesterol-binding within cells could be important in cancer treatment."

Beh and his colleagues draw on two important facts to support their conclusion.

"First, cancer cells require ORPs to survive," explains Beh. "Second, other scientists have previously shown that a new class of natural compounds that look like steroids or cholesterol can kill a broad spectrum of different cancer cells."

Beh says he and his research partners will now find out exactly which proteins respond to ORP activation and under what circumstances does cholesterol turn off ORP's activation of them.

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

Further reports about: ORP cancer cells cell growth cell surface cellular process

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>