Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of RNAi complex now crystal clear

21.06.2012
Researchers at the Whitehead Institute and Memorial Sloan-Kettering Cancer Center have defined and analyzed the crystal structure of a yeast Argonaute protein bound to RNA.

This complex plays a key role in the RNA interference (RNAi) pathway that silences gene expression. Describing the molecular structure of a eukaryotic Argonaute protein has been a goal of the RNAi field for close to a decade.

"You can learn a lot from biochemical experiments, but to more fully understand a protein like Argonaute, it's useful to know where all of the atoms are and which amino acids are playing important roles," says Whitehead Institute Member David Bartel, who is also an MIT professor of biology and a Howard Hughes Medical Institute (HHMI) investigator. "Learning the Argonaute crystal structure is an important step in understanding the RNAi biochemical pathway and will be the basis for many future experiments."

The yeast Argonaute structure is described in the June 21st print issue of Nature.

In humans and most other eukaryotes, the RNAi pathway can reduce cellular protein production by reducing the proteins' RNA templates. By exploiting this pathway, scientists are able to knock down the expression of specific proteins and thereby determine their roles within the cell or organism. The RNAi pathway has also been of considerable interest for the treatment of human disease.

RNAi depends on two proteins, Dicer and Argonaute. Dicer recognizes double-stranded RNA (dsRNA), latches onto it, and chops it into pieces 21-23 nucleotides long. Argonaute recognizes the dsRNA bits, discards one strand, and uses the other as a guide. When a single-stranded RNA matches the guide RNA's sequence, Argonaute cleaves the targeted RNA, thereby preventing it from serving as a template for protein production.

To determine the structure of Argonaute, Bartel and graduate student David Weinberg partnered with Kotaro Nakanishi in Dinshaw Patel's lab at Sloan-Kettering. Although the team expected to solve the structure of Argonaute alone, they were surprised to find that the protein came along with small bits of RNA that were also observed in the structure. The incorporation of these RNAs had switched the protein into an activated state that contained a four-component active site, the identification of which solved a longstanding mystery of what constituted the "missing" fourth component. With the structure of this complex in hand, scientists now have a better understanding for how it works.

"Seeing the crystal structure of a eukaryotic Argonaute for the first time was very exciting—it's such a large protein with a complicated topology and many moving parts," says Weinberg. "It's a really impressive molecular machine."

This work was supported by National Institutes of Health (NIH), the Human Frontier Science Program, the Japan Society for the Promotion of Science, and the National Science Foundation (NSF).

Written by Nicole Giese Rura

David Bartel is a Member at Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Structure of yeast Argonaute with guide RNA"

Nature. June 21, 2012.

Kotaro Nakanishi (1,4), David E. Weinberg (2,3,4), David P. Bartel (2,3) & Dinshaw J. Patel (1).

1. Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
2. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
3. Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

4. These authors contributed equally to this work.

Nicole Giese Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>