Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping dangerous cell regrowth reduces risk of further heart attacks

08.12.2011
Like Yin and Yang, the two proteins have opposite effects in the walls of blood vessels.

AIF-1 stimulates undesirable formation of new cells after a vascular injury, and IRT-1 has the opposite effect. It is the latter, IRT-1, that Maria Gomez wants to use to stop a dangerous development in the artery, together with researchers at Lund University Diabetes Centre in Sweden and Temple University in the USA. They have already had success in animal experiments.

“After an arterial injury, the inner layer of cells in the artery begins to regrow. In the long term, this usually causes more harm than good”, says Maria Gomez.

A common cause of arterial injuries is the clearing of blocked arteries often performed on patients who have had a heart attack.

“Initially the artery is opened up, but after a while new cell formation increases the risk of further heart attacks.”

In animal experiments, the research groups have demonstrated the opposite effects of the two proteins. The carotid artery of rats was damaged with balloon dilation, simulating the procedure carried out on heart attack patients.

After two weeks, there was noticeably less new cell formation in the arteries that had more of the protein IRT-1. With AIF-1, the opposite effect was observed.

“The interesting thing is that both proteins are formed from the same gene and we have now found a mechanism to control the balance in the formation of the two. Using a new drug we can thus increase the amount of the ‘good’ protein, IRT-1. It is not an approved drug, but it has been tested on mice and appears to be tolerated well”, says Maria Gomez.

The researchers have also analysed over 150 fatty deposits (‘plaques’) removed from the carotid arteries of patients.

“We saw that the dangerous plaques – those that are unstable, easily rupture, are more inflamed and more often produce symptoms – contain more AIF-1. Those with a higher proportion of the protein IRT-1 are less dangerous”, observes Lisa Berglund, co-author of the published study.

Diabetes patients develop more plaques, and more often dangerous ones, than non-diabetics. Diabetics have a significantly higher risk of suffering a heart attack.

The regrowth of cells in the arteries also leads to negative changes in blood flow. It may even be the case that AIF-1 is involved in the actual formation of plaques in the arteries.

Heart attacks are the most common cause of death in Sweden and many patients have repeated attacks, which are treated by clearing constrictions in the arteries of the heart using various methods.

“If we could reduce the risk of repeat attacks, this would represent very significant progress”, says Maria Gomez.

The study has been published in the scientific journal Cardiovascular Research:

"NFAT regulates the expression of AIF-1 and IRT-1: Yin and yang splice variants of neointima formation and atherosclerosis"

For more information, please contact: Maria.Gomez@med.lu.se
Tel: +46 40 391058, +46 702 226216

Megan Grindlay | idw
Further information:
http://www.vr.se
http://cardiovascres.oxfordjournals.org/content/early/2011/11/23/cvr.cvr309.abstract

Further reports about: AIF-1 IRT-1 blood vessels dangerous cell regrowth heart attacks proteins

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>