Scientists at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have for the first time successfully cultivated stem cells on human corneas, which may in the long term remove the need for donators.
Approximately 500 corneal transplantations are carried out each year in Sweden, and about 100,000 in the world. The damaged and cloudy cornea that is turning the patient blind is replaced with a healthy, transparent one. But the procedure requires a donated cornea, and there is a severe shortage of donated material. This is particularly the case throughout the world, where religious or political views often hinder the use of donated material.
Replacing donated corneasScientists Charles Hanson and Ulf Stenevi have used defective corneas obtained from the ophthalmology clinic at Sahlgrenska University Hospital in Mölndal. Their study is now published in the journal Acta Ophthalmologica, and shows how human stem cells can be caused to develop into what are known as “epithelial cells” after 16 days’ culture in the laboratory and a further 6 days’ culture on a cornea. It is the epithelial cells that maintain the transparency of the cornea.
First time ever on human corneas“If we can establish a routine method for this, the availability of material for patients who need a new cornea will be essentially unlimited. Both the surgical procedures and the aftercare will also become much more simple”, says Ulf Stenevi.
Link to the article: http://bit.ly/xm3SeM
Bibliographic data:Link to the article: http://bit.ly/xm3SeM
For more information, please contact: Charles Hanson, Associate Professor at the Sahlgrenska Academy, University of Gothenburg
Helena Aaberg | idw
Further information:
http://www.gu.se
http://bit.ly/xm3SeM
Further reports about: > Ophthalmologica > Stem cell innovation > embryonic stem > embryonic stem cell > epithelial cells > human embryonic stem cell > stem cells > surgical procedure
Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society
Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine
With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction
The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...
Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.
Fibroblasts kit - ready to heal wounds
Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.
In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...
Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.
Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Detailed insight into stressed cells
05.12.2019 | Life Sciences
05.12.2019 | Life Sciences
First field measurements of laughing gas isotopes
05.12.2019 | Materials Sciences