Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells can repair a damaged cornea

06.03.2012
A new cornea may be the only way to prevent a patient going blind – but there is a shortage of donated corneas and the queue for transplantation is long.

Scientists at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have for the first time successfully cultivated stem cells on human corneas, which may in the long term remove the need for donators.

Approximately 500 corneal transplantations are carried out each year in Sweden, and about 100,000 in the world. The damaged and cloudy cornea that is turning the patient blind is replaced with a healthy, transparent one. But the procedure requires a donated cornea, and there is a severe shortage of donated material. This is particularly the case throughout the world, where religious or political views often hinder the use of donated material.

Replacing donated corneas
Scientists at the Sahlgrenska Academy, University of Gothenburg, have taken the first step towards replacing donated corneas with corneas cultivated from stem cells.

Scientists Charles Hanson and Ulf Stenevi have used defective corneas obtained from the ophthalmology clinic at Sahlgrenska University Hospital in Mölndal. Their study is now published in the journal Acta Ophthalmologica, and shows how human stem cells can be caused to develop into what are known as “epithelial cells” after 16 days’ culture in the laboratory and a further 6 days’ culture on a cornea. It is the epithelial cells that maintain the transparency of the cornea.

First time ever on human corneas
“Similar experiments have been carried out on animals, but this is the first time that stem cells have been grown on damaged human corneas. It means that we have taken the first step towards being able to use stem cells to treat damaged corneas”, says Charles Hanson.

“If we can establish a routine method for this, the availability of material for patients who need a new cornea will be essentially unlimited. Both the surgical procedures and the aftercare will also become much more simple”, says Ulf Stenevi.

Few clinics conduct transplants
Only a few clinics are currently able to transplant corneas. Many of the transplantations in Sweden are carried out at the ophthalmology clinic at Sahlgrenska University Hospital, Department of Ophthalmology, Mölndal.
The article “Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro” was published in Acta Ophthalmologica on 27 January.

Link to the article: http://bit.ly/xm3SeM

Bibliographic data:
Title: Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro
Journal: Acta Ophthalmologica on 27 January
Authors: Charles Hanson, Thorir Hardarson, Catharina Ellerstro, Markus Nordberg, Gunilla Caisander, Mahendra Rao, Johan Hyllner3 and Ulf Stenevi

Link to the article: http://bit.ly/xm3SeM

For more information, please contact: Charles Hanson, Associate Professor at the Sahlgrenska Academy, University of Gothenburg
Telephone: +46 31 342 3572
Mobile: +46 76 715 9877
E-mail: charles.hanson@obgyn.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://bit.ly/xm3SeM

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>