Stacking at the flick of a switch

Small, structured nucleic acid strands designed to interact with specific target molecules, known as aptamers, are particularly interesting to scientists as therapeutics against viruses and blood clotting disorders. Aptamers that bind strongly to target enzymes or proteins can prevent their activity, thereby regulating the biological process they control.

Aptamers frequently contain stacks of hydrogen-bonded guanine-rich sequences, called quadruplexes, which enable effective binding to targets. When these structures are disrupted or destroyed—perhaps through poor replication—the aptamer can no longer bind. Interestingly, the reversible formation and disruption of these quadruplexes have the potential to be controlled using external stimuli, leading to a switching on and off of the aptamer's binding. Using this idea, Shinzi Ogasawara and Mizuo Maeda at the RIKEN Advanced Science Institute in Wako, have developed a light-controlled switch to control quadruplex formation in an aptamer that binds specifically to thrombin1, the protein in blood that control blood coagulation.

The researchers developed a range of modified aptamers that contained various numbers of potential quadruplex structural units. Using light they were able to switch and select between a stable quadruplex and a non-structured state. Using light to control a switch allows accurate and easy control of the location, dosage, and timing. They then screened their variant aptamers to determine the best number and positions of the structural units to give effective regulation.

More specifically, Ogasawara and Maeda were able to control the switching behavior using light of specific wavelengths. In solution, they found that when the quadruplex is present, the aptamer binds strongly to thrombin. When the sample was irradiated at 410 nanometers, the double bonds within the complex changed from a so-called trans configuration to a cis configuration that disrupted the quadruplex and suppressed binding of the aptamer. Irradiation at 310 nanometers, however, changed the bonds back into the trans form, allowing the quadruplex to re-form and bind once again.

Ogasawara and Maeda realized that the release-and-bind steps could be repeated over two cycles. First, they irradiated a reaction sample at 410 nanometers for 5 minutes and then at 310 nanometers for 2 minutes. After repeating the irradiation cycle, they found that the switch was completely reversible, and they detected no side reactions, thus demonstrating its potential in living cells.

Ogasawara and Maeda now plan to apply this technique to investigate other important biological events involving quadruplexes, such as gene expression and the construction of molecular machines.

The corresponding author for this highlight is based at the Bioengineering Laboratory, RIKEN Advanced Science Institute

Media Contact

Saeko Okada Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors