Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stacking at the flick of a switch

14.12.2009
A switch that controls formation of stacks from nucleic acid strands has potential applications in gene expression and molecular machines

Small, structured nucleic acid strands designed to interact with specific target molecules, known as aptamers, are particularly interesting to scientists as therapeutics against viruses and blood clotting disorders. Aptamers that bind strongly to target enzymes or proteins can prevent their activity, thereby regulating the biological process they control.

Aptamers frequently contain stacks of hydrogen-bonded guanine-rich sequences, called quadruplexes, which enable effective binding to targets. When these structures are disrupted or destroyed—perhaps through poor replication—the aptamer can no longer bind. Interestingly, the reversible formation and disruption of these quadruplexes have the potential to be controlled using external stimuli, leading to a switching on and off of the aptamer's binding. Using this idea, Shinzi Ogasawara and Mizuo Maeda at the RIKEN Advanced Science Institute in Wako, have developed a light-controlled switch to control quadruplex formation in an aptamer that binds specifically to thrombin1, the protein in blood that control blood coagulation.

The researchers developed a range of modified aptamers that contained various numbers of potential quadruplex structural units. Using light they were able to switch and select between a stable quadruplex and a non-structured state. Using light to control a switch allows accurate and easy control of the location, dosage, and timing. They then screened their variant aptamers to determine the best number and positions of the structural units to give effective regulation.

More specifically, Ogasawara and Maeda were able to control the switching behavior using light of specific wavelengths. In solution, they found that when the quadruplex is present, the aptamer binds strongly to thrombin. When the sample was irradiated at 410 nanometers, the double bonds within the complex changed from a so-called trans configuration to a cis configuration that disrupted the quadruplex and suppressed binding of the aptamer. Irradiation at 310 nanometers, however, changed the bonds back into the trans form, allowing the quadruplex to re-form and bind once again.

Ogasawara and Maeda realized that the release-and-bind steps could be repeated over two cycles. First, they irradiated a reaction sample at 410 nanometers for 5 minutes and then at 310 nanometers for 2 minutes. After repeating the irradiation cycle, they found that the switch was completely reversible, and they detected no side reactions, thus demonstrating its potential in living cells.

Ogasawara and Maeda now plan to apply this technique to investigate other important biological events involving quadruplexes, such as gene expression and the construction of molecular machines.

The corresponding author for this highlight is based at the Bioengineering Laboratory, RIKEN Advanced Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6086
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>