Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special Gold Nanoparticles Show Promise for “Cooking” Cancer Cells

24.03.2009
Researchers are describing a long-awaited advance toward applying the marvels of nanotechnology in the battle against cancer.

They have developed the first hollow gold nanospheres — smaller than the finest flecks of dust — that search out and “cook” cancer cells. The cancer-destroying nanospheres show particular promise as a minimally invasive future treatment for malignant melanoma, the most serious form of skin cancer, the researchers say. Melanoma now causes more than 8,000 deaths annually in the United States alone and is on the increase globally.

The topic of a report presented here today at the American Chemical Society’s 237th National Meeting, the hollow gold nanospheres are equipped with a special “peptide.” That protein fragment draws the nanospheres directly to melanoma cells, while avoiding healthy skin cells. After collecting inside the cancer, the nanospheres heat up when exposed to near-infrared light, which penetrates deeply through the surface of the skin. In recent studies in mice, the hollow gold nanospheres did eight times more damage to skin tumors than the same nanospheres without the targeting peptides, the researchers say.

“This technique is very promising and exciting,” explains study co-author Jin Zhang, Ph.D., a professor of chemistry and biochemistry at the University of California in Santa Cruz. “It’s basically like putting a cancer cell in hot water and boiling it to death. The more heat the metal nanospheres generate, the better.”

This form of cancer therapy is actually a variation of photothermal ablation, also known as photoablation therapy (PAT), a technique in which doctors use light to burn tumors. Since the technique can destroy healthy skin cells, doctors must carefully control the duration and intensity of treatment.

Researchers now know that PATs can be greatly enhanced by applying a light absorbing material, such as metal nanoparticles, to the tumor. Although researchers have developed various types of metal nanoparticles to help improve this technique, many materials show poor penetration into cancer cells and limited heat carrying-capacities. These particles include solid gold nanoparticles and nanorods that lack the desired combination of spherical shape and strong near-infrared light absorption for effective PAT, scientists say.

To develop more effective cancer-burning materials, Zhang and colleagues focused on hollow gold nanospheres — each about 1/50,000th the width of a single human hair. Previous studies by others suggest that gold “nanoshells” have the potential for strong near-infrared light absorption. However, scientists have been largely unable to produce them successfully in the lab, Zhang notes.

After years of research toward this goal, Zhang announced in 2006 that he had finally developed a nanoshell or hollow nanosphere with the “right stuff” for cancer therapy: Gold spheres with an optimal light absorption capacity in the near-infrared region, small size, and spherical shape, perfect for penetrating cancer cells and burning them up.

“Previously developed nanostructures such as nanorods were like chopsticks on the nanoscale,” Zhang says. “They can go through the cell membrane, but only at certain angles. Our spheres allow a smoother, more efficient flow through the membranes.”

The gold nanoshells, which are nearly perfect spheres, range in size from 30 to 50 nanometers — thousands of times smaller than the width of a human hair. The shells are also much smaller than other nanoparticles previously designed for photoablation therapy, he says. Another advantages is that gold is also safer and has fewer side effects in the body than other metal nanoparticles, Zhang notes.

In collaboration with Chun Li, Ph.D., a professor at the University of Texas M.D. Anderson Cancer Center in Houston, Zhang and his associates equipped the nanospheres with a peptide to a protein receptor that is abundant in melanoma cells, giving the nanospheres the ability to target and destroy skin cancer. In tests using mice, the resulting nanospheres were found to be significantly more effective than solid gold nanoparticles due to much stronger near infrared-light absorption of the hollow nanospheres, the researchers say.

The next step is to try the nanospheres in humans, Zhang says. This requires extensive preclinical toxicity studies. The mice study is the first step, and there is a long way to go before it can be put into clinical practice, Li says.

The U.S. Department of Defense and the National Science Foundation funded the research in Zhang’s lab while the National Institutes of Health funded the work in Dr. Li’s lab.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | Newswise Science News
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>