Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southern Ocean drives massive bloom of tiny phytoplankton

01.12.2017

Researchers identify the ocean conditions behind an annual algal bloom that can be seen from space

Scientists have uncovered the ocean conditions that support a massive summertime bloom of algae that spans 16 percent of the global ocean. Known as the Great Calcite Belt, this dense group of a microscopic phytoplankton, coccolithophores, can be seen in satellite images as turquoise swirls in the dark blue water of the Southern Ocean.


A phytoplankton bloom in the Southern Ocean reflects light back toward a NASA satellite. An international team of scientists recently determined the ocean conditions that support the massive summertime bloom, which spans 16 percent of the global ocean.

Credit: NASA

"Satellites see the light reflected by the coccolithophores," said Barney Balch, a senior research scientist at Bigelow Laboratory for Ocean Sciences. "Under a high-powered microscope, you can see this is because they surround themselves with intricate, white plates made of calcium carbonate. These chalk plates act like millions of tiny suspended mirrors, reflecting sunlight back out of the ocean toward NASA's Earth-observing satellites."

Balch was part of an international team of researchers from Bigelow Laboratory, University of Southampton (UK), the National Oceanography Centre in Southampton, and the Bermuda Institute of Ocean Science that studied the conditions that make the bloom possible and the ecology of the phytoplankton species that compose it. They recently published their results in the journal Biogeosciences.

"The links between ocean chemistry and populations of coccolithophores and diatoms are not straightforward," said lead author Helen Smith, a researcher from the University of Southampton. "To fully understand the interplay between these two important phytoplankton groups and the ocean environment, we had to maintain a holistic approach to data collection and analysis."

The team found that sea surface temperature, nutrient levels, and carbon dioxide concentration were the most important factors in determining where species of coccolithophores and diatoms, another type of microscopic phytoplankton, grow. As expected, dissolved iron was a key factor in controlling the plankton populations.

"All phytoplankton need iron to grow, and it is generally in short supply in the Southern Ocean," said Ben Twining, a senior research scientist and interim president at Bigelow Laboratory. "Coccolithophores - but not necessarily diatoms - were more abundant at locations with elevated iron."

Indeed, diatoms also need silica to build their glass exoskeletons. Great Calcite Belt water doesn't have enough silicic acid to support large diatoms, which are typically found in the most productive parts of the world's oceans. This creates an opportunity for species of tiny phytoplankton to thrive, including coccolithophores and extremely small diatom species. As a result, small phytoplankton dominate the region.

"No single environmental factor was responsible for the variability in phytoplankton in our study, which highlights the complexity of coccolithophore and diatom success within the summertime Great Calcite Belt," Smith said.

Furthermore, the researchers found cause to question the role in carbon removal that the Southern Ocean is thought to play in the global carbon cycle, at least in the Great Calcite Belt. When coccolithophores build their chalk plates, they remove carbon from the water, but that process also releases carbon dioxide back into the surface ocean and atmosphere.

Throughout the Southern Ocean, the dense mineral shells of coccolithophores and diatoms ballast sinking particles of organic debris. This process of pulling carbon into the ocean's depths and away from the atmosphere is called the biological carbon pump. The coccolithophore feature that forms the Great Calcite Belt is so big, however, that it can alter the summertime water chemistry.

"When we steam through the Great Calcite Belt, we see that there are hot-spots of elevated carbon dioxide, in a place that remains generally a major carbon sink," said Professor Nicholas Bates, a co-author from Bermuda Institute of Ocean Science.

This finding improves the integrity of global carbon cycle models, which can help scientists around the world predict the fate of carbon dioxide in the atmosphere.

Balch and his team will continue to study the impacts of coccolithophores on the global ocean, undertaking cruises supported by the National Science Foundation in 2019 and 2020 to the Indian Ocean. Cold surface water in the Great Calcite Belt region sinks deep below the warmer, less dense water to the north. Forty years later, that water surfaces again near the equator, bearing nutrients that fuel an estimated 75 percent of microscopic plant growth in the tropics and subtropics.

"We think that the phytoplankton of the Great Calcite Belt fundamentally condition this water before it sinks, shaping what will grow near the equator when the water surfaces decades later," Balch said.

Media Contact

Steven Profaizer
sprofaizer@bigelow.org
207-315-2567 x103

 @BigelowLab

http://www.bigelow.org 

Steven Profaizer | EurekAlert!

Further reports about: Atmosphere Ocean carbon dioxide coccolithophores diatoms global carbon cycle

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>