Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Source Discovered for the Generation of Nerve Cells in the Brain

02.12.2009
The research group of Professor Magdalena Götz of Helmholtz Zentrum München and Ludwig-Maximilians-Universität (LMU) Munich has made a significant advance in understanding regeneration processes in the brain.

The researchers discovered progenitor cells which can form new glutamatergic neurons following injury to the cerebral cortex. Particularly in Alzheimer’s disease, nerve cell degeneration plays a crucial role.

In the future, new therapeutic options may possibly be derived from steering the generation and/or migration mechanism. These findings have been published in the current issue of the renowned journal Nature Neuroscience.

Until only a few years ago, neurogenesis – the process of nerve cell development – was considered to be impossible in the adult brain. The textbooks asserted that dead nerve cells could not be replaced. Then researchers discovered regions in the forebrain in humans in which new nerve cells can be generated throughout life. These so-called GABAergic cells use gamma-aminobutyric acid (GABA), a neurotransmitter of the central nervous system.

A research team of scientists led by Magdalena Götz, director of the Institute of Stem Cell Research at Helmholtz Zentrum München and chair of the Department of Physiological Genomics of LMU, has now taken a closer look at this brain region in the mouse model. Their findings: Even in the forebrain, there are other nerve cells that are regularly generated – the so-called glutamatergic nerve cells, which use glutamate as neurotransmitter. The stem cell researchers could prove this by means of a specific transcription factor: Tbr2 is only present in progenitor cells of glutamatergic nerve cells.

The newly generated nerve cells in the adult organism are located in the olfactory bulb, the region of the brain involved in the sense of smell. Nerve cells that use glutamate as a neurotransmitter are also responsible for memory – storing and retrieving information. In Alzheimer dementia, alterations in the signal transduction pathways of these special cells play a significant role.

Magdalena Götz explained the reason why this finding is so important: “Neural progenitor cells can generate these newly discovered glutamatergic nerve cells for the neighboring cerebral cortex – for example after brain injury.” The research group was able to demonstrate this on the mouse model: There the cells migrated into the damaged neighboring cerebrum tissue and generated mature neurons. Accordingly, progenitor cells could then replace degenerate nerve cells.

“Now it will be interesting to find out whether this process also takes place in humans, particularly in Alzheimer’s patients,” said Magdalena Götz, “and also whether the process can be kept under control to avoid massive cell death.” One therapeutic approach would then be to attempt to stimulate the body’s own replacement mechanism.

Further Information
Original Publication:: Monika S Brill, Jovica Ninkovic, Eleanor Winpenny, Rebecca D Hodge, Ilknur Ozen, Roderick Yang, Alexandra Lepier, Sergio Gascón, Ferenc Erdelyi, Gabor Szabo, Carlos Parras, Francois Guillemot, Michael Frotscher, Benedikt Berninger, Robert F Hevner, Olivier Raineteau & Magdalena Götz: Nature Neuroscience, Volume 12 No 11 pp1351-1474 (doi:10.1038/nn.2416)

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 16 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

The Institute of Stem Cell Research of Helmholtz Zentrum München investigates the cellular and molecular mechanisms which regulate cell fate and cell proliferation in different organ systems. The scientists investigate the stem cells of different organs, e.g. of the nervous system or of the blood and immune systems in order to elucidate the molecular and cellular mechanisms that are responsible for the common features of all stem cells, such as multi-potency and self-renewal. Another research focus is the regulation of the genesis of specific cell types from stem cells with respect to cell replacement therapy.

Editor: Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 85764 Neuherberg

Tel.: 089-3187-3946, Fax 089-3187-3324, Internet: www.helmholtz-muenchen.de, E-Mail: presse@helmholtz-muenchen.de

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>