Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smokers could be more prone to schizophrenia

27.03.2012
Smoking alters the impact of a schizophrenia risk gene. Scientists from the universities of Zurich and Cologne demonstrate that healthy people who carry this risk gene and smoke process acoustic stimuli in a similarly deficient way as patients with schizophrenia. Furthermore, the impact is all the stronger the more the person smokes.

Schizophrenia has long been known to be hereditary. However, as a melting pot of disorders with different genetic causes is concealed behind manifestations of schizophrenia, research has still not been able to identify the main gene responsible to this day.

In order to study the genetic background of schizophrenia, the frequency of particular risk genes between healthy and ill people has mostly been compared until now. Pharmacopyschologist Professor Boris Quednow from University Hospital of Psychiatry, Zurich, and Professor Georg Winterer’s workgroup at the University of Cologne have now adopted a novel approach. Using electroencephalography (EEG), the scientists studied the processing of simple acoustic stimuli (a sequence of similar clicks). When processing a particular stimulus, healthy people suppress the processing of other stimuli that are irrelevant to the task at hand. Patients with schizophrenia exhibit deficits in this kind of stimulus filtering and thus their brains are probably inundated with too much information. As psychiatrically healthy people also filter stimuli with varying degrees of efficiency, individual stimulus processing can be associated with particular genes.

Smokers process stimuli less effectively
In a large-scale study involving over 1,800 healthy participants from the general population, Boris Quednow and Georg Winterer examined how far acoustic stimulus filtering is connected with a known risk gene for schizophrenia: the so-called “transcription factor 4” gene (TCF4). TCF4 is a protein that plays a key role in early brain development. As patients with schizophrenia often smoke, the scientists also studied the smoking habits of the test subjects.

The data collected shows that psychiatrically healthy carriers of the TCF4 gene also filter stimuli less effectively – like people who suffer from schizophrenia. It turned out that primarily smokers who carry the risk gene display a less effective filtering of acoustic impressions. This effect was all the more pronounced the more the people smoked. Non-smoking carriers of the risk gene, however, did not process stimuli much worse. “Smoking alters the impact of the TCF4 gene on acoustic stimulus filtering,” says Boris Quednow, explaining this kind of gene-environment interaction. “Therefore, smoking might also increase the impact of particular genes on the risk of schizophrenia.” The results could also be significant for predicting schizophrenic disorders and for new treatment approaches, says Quednow and concludes: “Smoking should also be considered as an important cofactor for the risk of schizophrenia in future studies.” A combination of genetic (e.g. TCF4), electrophysiological (stimulus filtering) and demographic (smoking) factors could help diagnose the disorder more rapidly or also define new, genetically more uniform patient subgroups.

Literature:
Boris B. Quednow et al. Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of auditory sensory gating. In: PNAS, March 26, 2012. DOI: 10.1073/pnas.1118051109
About the study
The university psychiatric hospitals of Aachen, Charité Berlin, Bonn, Düsseldorf, Erlangen, Mainz and Mannheim participated in the multi-centric study. The study was funded by the Deutschen Forschungsgemeinschaft (German Research Foundation) as part of the priority program Nicotine: Molecular and Physiological Effects in Central Nervous System (CNS) (SPP1226, WI1316/9-1).
Contact:
Prof. Dr. Boris B. Quednow
Experimental and Clinical Pharmacopsychology
University Hospital of Psychiatry, Zurich
Tel.: +41 44 384 27 77
Email: quednow@bli.uzh.ch

Nathalie Huber | idw
Further information:
http://www.mediadesk.uzh.ch/

Further reports about: Cologne Psychiatry Smokers TCF4 acoustic stimulus schizophrenia

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>