Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018

New zone comprises reef fishes--including numerous new species -- That live well below shallow coral reefs

Based on the unique fish fauna observed from a manned submersible on a southern Caribbean reef system in Curaçao, Smithsonian explorers defined a new ocean-life zone, the rariphotic, between 130 and 309 meters (about 400 to 1,000 feet) below the surface.


One of the new fish species discovered in the Rariphotic, Haptoclinus dropi was named for the Smithsonian's Deep Reef Observation Project. Very little is known about deep reefs which are only observable using submersibles.

Credit: Carole Baldwin, Smithsonian

The rariphotic occurs just below a previously defined reef zone, the mesophotic, which extends from about 40 to as deep as 150 meters (about 120-450 feet). The role of this new zone as a refuge for shallower reef fishes seeking relief from warming surface waters or deteriorating coral reefs is still unclear.

The initial motivation for studying deep-reef ecosystems was the declining health of shallow reefs. Many researchers wonder if deeper reef areas, sometimes known as the "coral reef twilight zone," might act as refuges for shallow-water organisms. As the Smithsonian researchers sought to answer this question, it became clear to them that scientists have only scratched the surface when it comes to understanding the biodiversity of reef fishes.

"It's estimated that 95 percent of the livable space on our planet is in the ocean," said Carole Baldwin, curator of fishes at the Smithsonian's National Museum of Natural History, lead author of the study and director of the Smithsonian's Deep Reef Observation Project (DROP).

"Yet only a fraction of that space has been explored. That's understandable for areas that are thousands of miles offshore and miles deep. But tropical deep reefs are just below popular, highly studied shallow reefs--essentially our own back yards. And tropical deep reefs are not barren landscapes on the deep ocean floor: they are highly diverse ecosystems that warrant further study. We hope that by naming the deep-reef rariphotic zone, we'll draw attention to the need to continue to explore deep reefs."

The authors defined the rariphotic based on depth observations of about 4,500 fishes representing 71 species during approximately 80 submersible dives to as deep as 309 meters. Most of the fishes in the rariphotic zone not only look similar to shallow reef fishes (photos) but are related to them rather than to true deep-ocean fishes, which belong to quite different branches of the evolutionary tree. This research showed that assemblages of the kinds of reef-fishes that inhabit shallow water in fact have double the depth range they were previously thought to have.

Since 2011, when DROP began, more than 40 researchers, most from the National Museum of Natural History and the Smithsonian Tropical Research Institute (STRI), have intensively studied deep-reef fishes and invertebrates off Curaçao. They named six new genera and about 30 new species as they explored a 0.2 square kilometer (0.08 square mile) area of reef, much of which is too deep for enough light to penetrate to support the algal symbionts on which reef-building corals rely.

"About one in every five fish we're finding in the rariphotic of the Caribbean is a new species," said D. Ross Robertson, marine biologist at STRI and a co-author of the study. "So far, my favorite is Haptoclinus dropi" (see photo). It was named by Baldwin and Robertson in 2013 for the Smithsonian's DROP research project. Many more new species already discovered by DROP researchers await description.

While SCUBA divers can work down to about 40 meters (120 feet), the Curasub mini-submarine plunges to 309 meters (about 1,000 feet), where it can stay submerged for up to eight hours at normal atmospheric pressure, enabling the passengers to simply step ashore after a dive. This technology has significantly extended scientists' ability to explore deep reefs.

Based on their research on reef fishes, the Smithsonian researchers and co-author Luke Tornabene (assistant professor at the University of Washington and former Smithsonian post-doctoral fellow) present a new classification of coral-reef faunal zones:

  • Altiphotic (high light): The new name for the previously unnamed 0-40 meters (0-120 feet), the well-lit zone where reef corals are abundant, which extends as deep as conventional scuba divers normally go.
  • Mesophotic (medium light): 40 to as deep as 150 meters (120-450 feet), the maximum depth at which tropical reef-building corals and their algal symbionts can survive.
  • Rariphotic (low light): Newly discovered faunal zone from 130-300 meters (400-1,000 feet), below the reef-building coral zone, and as deep as Curasub can go.
  • Deep aphotic (effectively no light): Below 300 meters (below 1,000 feet)

"Reef ecosystems just below the mesophotic are globally underexplored, and the conventional view based on the few studies that mention them was that mesophotic ecosystems transition directly into those of the deep sea," Baldwin said. "Our study reveals a previously unrecognized zone comprising reef vs. deep-sea fishes that links mesophotic and deep-sea ecosystems."

###

Research was supported by the Smithsonian's Consortium for Understanding and Sustaining a Biodiverse Planet, Competitive Grants for the Promotion of Science, National Museum of Natural History Research Programs, the Herbert R. and Evelyn Axelrod Endowment Fund for systematic ichthyology and the Smithsonian Tropical Research Institute, National Geographic Society's Committee for Research and Exploration (Grant #9102-12) and the Prince Albert II of Monaco Foundation (Grant #1801).

Reference: Baldwin, C.C., Tornabene, L. and Robertson, D.R. 2018. Below the Mesophotic. Scientific Reports (a publication of Nature.com).

More information:

https://global.si.edu/projects/deep-reef-observation-project-drop http://ocean.si.edu/blog/keeping-exploration-alive-manned-submersibles

Media Contact

Beth King
kingb@si.edu
202-633-4700 x28216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>