Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slight alterations in microRNA sequences hold more information than previously thought

24.09.2014

MicroRNA isoforms show population-specific and gender-specific signatures -- a finding that could affect how researchers view and study microRNAs.

Researchers have encountered variants or isoforms in microRNAs (miRNAs) before, but assumed that these variants were accidental byproducts. A recent study, published in the journal Oncotarget this month, shows that certain so called isomiRs have abundances that depend on geographic subpopulations and gender and that the most prevalent variant of a given miRNA may not be the one typically listed in the public databases.

"This study shows that microRNA isoforms are much more common than we had previously assumed. The fact that some isoforms are shared by certain subpopulations or are more prominent in women than in men suggests that their presence likely serves a purpose and this warrants further study." says Isidore Rigoutsos, Director of the Center for Computational Medicine at Thomas Jefferson University (TJU).

MiRNAs are short non-coding RNAs approximately 22 nucleotides in length that were first discovered a little over 20 years ago. It was not long after their discovery that they began commanding the attention of many researchers worldwide thanks to their intimate involvement in many cellular events. We know now that miRNAs are regulators of protein-coding and also of non-protein-coding RNA transcripts and that they regulate the abundance of the affected transcripts, the miRNA "targets," in a sequence-dependent manner. What makes miRNAs so important is their involvement in fundamental processes such as development and homeostasis. Not surprisingly, miRNAs and their dysregulation have also being linked to many human conditions, diseases, and syndromes.

MiRNAs, just like the messenger RNAs that code for proteins, have "isoforms" i.e. variants that arise from the same genomic locus and differ from one another by only 1-2 letters at either their left or right terminus. Different variants of a given miRNA typically have different abundances compared to that of the 'representative' isoform of the locus which is also the one that is generally listed in the public databases.

For many years, miRNA isoforms had been thought of as inconsequential. However, the advent of next generation sequencing, or deep sequencing, is now enabling scientists to take a higher-resolution look at these molecular events.

A TJU team led by Rigoutsos analyzed deep sequencing data from lymphoblastoid cell lines (LCLs) derived from 452 men and women from five different population groups capturing four European and one African ancestries. The team discovered that the isomiRs in these LCLs exhibit expression profiles that are population-dependent and gender-dependent with differences existing even among the European populations. By analyzing independently obtained experimental data, the team was able to generate additional evidence showing that many of the isomiRs they identified could also associate with the Argonaute silencing complex, suggesting that these miRNA variants participate in the RNA interference pathway and have functional roles just like the 'representative' miRNA from the corresponding locus. What these functional roles are and how they differ for each variant is only beginning to be understood. Even though the TJU team worked with LCLs, Dr. Rigoutsos states that "one can reasonably assume that analogous observations likely hold true for other cell types as well."

The team's findings have several implications: For researchers they suggest that the assays currently in the market do not necessarily capture the variant that is prevalent in the cells with which a researcher works, instead measuring a less abundant isoform that is perhaps nonessential for the cell or tissue type at hand. The findings suggest that even cell lines from the same tissue could have more differences than they have similarities. For patients, the findings represent an opportunity for a potentially significant advantage: the knowledge that a given patient has a different molecular profile than another patient with the same disease is a very important piece of information that physicians can use to the patient's benefit when deciding which course of medical treatment to follow.

###

For more information, contact Edyta Zielinska, 215-955-5291, edyta.zielinska@jefferson.edu.

About Jefferson

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Thomas Jefferson University includes the Sidney Kimmel Medical College (SKMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, the Graduate School of Biomedical Sciences and the Jefferson Schools of Nursing, Pharmacy, Health Professions, and Population Health. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of SKMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Edyta Zielinska | Eurek Alert!

Further reports about: RNA RNAs alterations databases differ differences miRNA miRNAs sequences

More articles from Life Sciences:

nachricht Lateral gene transfer enables chemical protection of beetles against antagonistic fungi
18.07.2018 | Johannes Gutenberg-Universität Mainz

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>