Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-molecule technique captures calcium sensor calmodulin in action

12.08.2009
Unknown workings of a signaling protein unfold in the hands of biophysicists, through atomic-force spectroscopy

It's well known that the protein calmodulin specifically targets and steers the activities of hundreds of other proteins – mostly kinases – in our cells, thus playing a role in physiologically important processes ranging from gene transcription to nerve growth and muscle contraction But just how it distinguishes between target proteins is not well understood.

Methods developed by biophysicists at the Technische Universitaet Muenchen (TUM) have enabled them to manipulate and observe calmodulin in action, on the single-molecule scale. In recent experiments, as they report in the early edition of PNAS, the Proceedings of the National Academy of Sciences, they compared the sequences of structural and kinetic changes involved in binding two different kinases. The results reveal new details of how calmodulin binds and regulates its target proteins.

A so-called signaling protein and "calcium sensor," calmodulin gives start and stop signals for a great number of intracellular activities by binding and releasing other proteins. Calmodulin can bind up to four calcium ions, and the three-dimensional spatial structure of calmodulin varies with the number of calcium ions bound to it. This structure in turn helps to determine which amino acid chains – peptides and proteins – the calmodulin will bind.

Techniques such as X-ray structural analysis offer snapshots, at best, of steps in this intracellular work flow. But single-molecule atomic-force spectroscopy has opened a new window on such dynamic processes.

Professor Matthias Rief and colleagues at the Technische Universitaet Muenchen had previously shown that they could fix a single calmodulin molecule between a surface and the cantilever tip of a specially built atomic-force microscope, expose it to calcium ions in solution, induce peptide binding and unbinding, and measure changes in the molecule's mechanical properties as it did its work.

"What is special about our technique," Rief says, "is that we can work directly in aqueous solution. We can make our measurements in exactly the conditions under which the protein works in its natural environment. So we can directly observe how the calmodulin snatches the amino acid chain and folds itself, to hold its target fast." Measuring the force needed to bend the calmodulin molecule out of its stable condition at any given moment enables the researchers to compute the energies associated with binding both the calcium ions and the amino acid chains. And by following changes in the molecule's mechanical properties over time, they also can determine how long a protein fragment remains bound.

The results Rief and biophysicist Jan Philipp Junker report in the early edition of PNAS show that their approach also enables detailed comparative studies of binding sequences for different target proteins. The target sequences observed in these experiments are called skMLCK and CaMKK. Rief and Junker used mechanical force – actually pulling on complexes of calmodulin and the target peptides at rates of 1 nanometer per second or less – to slow down the processes to observable time scales and to clearly separate the individual unbinding steps.

"By applying mechanical force," Junker says, "we are able to dismantle the calmodulin-target peptide complex with surgical precision. Using conventional methods, this would be very difficult to do."

Among the detailed insights this approach made accessible are the hierarchy of folding and target binding, the sequence of unbinding events, and target-specific differences in terms of what is called cooperative binding.

Original paper: "Single-molecule force spectroscopy distinguishes target binding modes of calmodulin," by Jan Philipp Junker and Matthias Rief, published in the online Early Edition of PNAS, Proceedings of the National Academy of Sciences for the week of August 10, 2009.

Contact:
Prof. Matthias Rief
Chair for Experimental Physics
Technische Universitaet Muenchen (TUM)
James-Franck-Str. 1
85748 Garching, Germany
Tel: +49 89 289 12471
Fax: +49 89 289 12523
E-mail: mrief@ph.tum.de

Patrick Regan | EurekAlert!
Further information:
http://www.tum.de

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>