Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling Pathways to the Nucleus

19.03.2018

Researchers have demonstrated how auxin, a hormone that controls many processes in plants, reaches its destination

A team of researchers from the University of Freiburg have discovered how the plant hormone auxin is transported within the cell and how this signaling pathway helps to control gene expression in the nucleus. Auxin regulates many processes in plants: from embryonic development, to the development of organs, all the way to responses to changes in the environment. The team recently published its research in the journal Cell Reports.


The hormone auxin controls many processes in plants.

Source: Institute of Biology II/University of Freiburg

According to current scientific models, auxin works with other proteins to fulfill its function. When auxin content in the nucleus rises, receptors bind in the presence of auxin repressors, initiate repressor degradation and enable auxin responsive transcription factors to trigger gene expression. Because it is believed that auxin content in the nucleus is important for this, the researchers focused on how auxin gets into the nucleus and how this process is controlled.

The researchers from the University of Freiburg therefore collaborated with colleagues from Munich and Okayama, Japan, to test new, fluorescent, auxin-mimicking molecules in single cells. These molecules allowed them to visualize the accumulation of auxin in the cell without triggering any auxin-related processes. They were thus able to demonstrate that the auxin-mimicking molecules accumulated primarily in the endoplasmic reticulum (ER), which is a system of flat tubules that is a continuation of the nuclear membrane directly connected to the nucleus.

Next, the team studied how the ER, nucleus, and other cell parts work together to absorb auxin in the nucleus. Because there are currently no adequate methods of directly measuring the transport of auxin between the cell’s different compartments, the researchers developed a combined experimental-theoretical approach that allows them to use a combination of microscopy, quantitative data analysis, and mathematical modeling to observe how individual plant cells react to different auxin levels. Based on the results of their research, they concluded that the flow of auxin from the ER to the nucleus represents an important signaling pathway within the cell to regulate auxin levels in the nucleus, and hence in supporting processes triggered by auxin.

The team of researchers includes Dr. Cristina Dal Bosco, Dr. Alexander Dovzhenko, and Prof. Dr. Klaus Palme, all from the Department of Molecular Plant Physiology of the Institute of Biology II, as well as Dr. Alistair Middleton and Prof. Dr. Christian Fleck, both from the Center for Biological Systems Analysis (ZBSA) at the University of Freiburg. Dr. Palme is also a member of the cluster of excellence BIOSS Centre for Biological Signalling Studies.

Original Publication:
Middleton, A. M., Dal Bosco, C, Chlap, P, Bensch, R., Harz, H., Ren, F., Bergmann, S., Wend, S., Weber, W., Hayashi, K., Zurbriggen, M.D., Uhl, R., Ronneberger, O., Palme, K., Fleck, C., Dovzhenko, A. (2018): Data-driven modeling of intracellular auxin fluxes indicates a dominant role of the ER in controlling nuclear auxin uptake. Cell Reports.
www.cell.com/cell-reports/fulltext/S2211-1247(18)30269-9

Contact:
Prof. Dr. Klaus Palme
Institute of Biology II
University of Freiburg
Phone: +49 (0)761/203 - 2954
E-Mail: klaus.palme@biologie.uni-freiburg.de

Caption:
The hormone auxin controls many processes in plants. Source: Institute of Biology II/University of Freiburg

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/signaling-pathways-to-t...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>