Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short nerve fibres made visible

16.04.2020

A team led by Nikolaus Weiskopf from the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig has now succeeded in making short neuronal fibers visible in the living human brain using magnetic resonance imaging (MRI). Their study is an important step towards a much more precise reconstruction of the unique network of anatomical connections and the flow of information in the brain in healthy and sick people and thus a better understanding of the brain.

The human brain is an immense network of a multitude of cells connected by billions of nerve fibres. Almost 90 percent of the connections in our brain are short and transmit information between lower and higher processing levels.


The scientists made a representative subset of the short white matter fibers visible connecting the lower and higher visual cortical areas in the brain.

© MPI CBS

These connections ensure that our brain functions: With their help, we see, hear, think and act. That is why neuroscientists are looking for new methods that can represent these short connections non-invasively.

"We are now able to detect short nerve fibers with a resolution higher than one millimeter. To validate our results, we combine functional and anatomical magnetic resonance imaging and compare their results with each other," explains Fakhereh Movahedian Attar, who conducted the study with her colleagues at the Max Planck Institute for Human Cognitive and Brain Sciences.

The scientists make neuronal fibers and nerve connections in the brain visible by taking advantage of the limited mobility of water in the densely packed nerve fiber bundles. The fiber directions and connection strengths are then derived from this.

"This method is widely used to detect long fiber tracts in the brain, but the short fibers, which are thin and often cross over each other, are not detected. We have now combined the latest magnetic resonance imaging technology and tailored analysis techniques to overcome this limitation. To image the short fibres, we used our institute's Connectom scanner, one of four such devices worldwide," says Fakhereh Movahedian Attar, describing the method.

Wired together

She and her colleagues were able to show that the areas in the visual cortex of our brain that are responsible for visual processing at lower and higher levels are wired together by short fibers according to a very specific principle.

Such cortical regions, which process the same part of the visual field, are also more strongly interconnected. The study improves our understanding how brain structure is related to its function, comparable to how networks of streets affect the flow and direction of traffic.

The short fibre tracts change with normal brain development and can also be affected by various neurodegenerative diseases, such as multiple sclerosis. Therefore, their improved measurement not only promises progress in the basic sciences, but in the long term possibly also in clinical diagnostics.

Wissenschaftliche Ansprechpartner:

Nikolaus Weiskopf
Director Neurophysics
weiskopf@cbs.mpg.de

Originalpublikation:

"Mapping Short Association Fibers in the Early Cortical Visual Processing Stream Using In Vivo Diffusion Tractography" in Cerebral Cortex (2020): https://academic.oup.com/cercor/article/doi/10.1093/cercor/bhaa049/5817809

Weitere Informationen:

Videolinks:
https://youtu.be/-eNqtj_r9bQ
https://youtu.be/i9yvQGjZCHg

Bettina Hennebach | Max-Planck-Institut für Kognitions- und Neurowissenschaften
Further information:
https://www.mpg.de/14689172/0415-nepf-132884-short-nerve-fibres-made-visible

More articles from Life Sciences:

nachricht Quick notes in the genome
07.07.2020 | Max-Planck-Institut für molekulare Genetik

nachricht Limitations of Super-Resolution Microscopy Overcome
07.07.2020 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>