Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shilatifard and colleagues clarify the enzymatic activity of factors involved in childhood leukemia

07.05.2009
The Stowers Institute's Shilatifard Lab and colleagues have provided new insight into the molecular basis for H3K4 methylation, an activity associated with the MLL protein found in chromosomal translocation-based aggressive infant acute leukemias. Studies describing these collaborative studies were published online by Molecular and Cellular Biology and Cell this week.

Many hematological malignancies are associated with a genetic error in which a portion of one chromosome has broken and fused with another chromosome. This inappropriate fusion of chromosomal DNA is referred to as chromosomal translocation.

A large proportion of infant leukemias are the result of chromosomal translocations in the Mixed Lineage Leukemia (MLL) gene. Children suffering from these chromosomal translocations have low survival rates and face treatment options that have devastating side effects.

The Stowers Institute's Shilatifard Lab studies chromosomal translocations related to the MLL gene. Several years ago, they identified a molecular complex – COMPASS – containing the yeast homologue of the human MLL. COMPASS was the first H3K4 methylase to be identified, and human MLL is also found in COMPASS-like complexes capable of methylating H3K4, a posttranslational modification marking chromosomes for transcription.

"We observed that the addition of three methyl groups (a process known as trimethylation) on the fourth lysine of H3K4 is regulated by the active site of the yeast equivalent of the MLL protein complex, COMPASS," said Yoh-hei Takahashi, Ph.D., Postdoctoral Research Associate and first author on the publication in Molecular and Cellular Biology. "We also demonstrated that a single residue (Tyr1052) functions with a known subunit of COMPASS (Cps40) to regulate the trimethylation of H3K4."

"These are exciting findings because each of these are significant steps that lead to unraveling how translocations cause leukemia and how we can develop treatments that better target and cure leukemia," said Ali Shilatifard, Ph.D., Investigator and senior author on the publication.

Additional contributing authors to the study published in Molecular and Cellular Biology from the Stowers Institute include Jung Shin Lee, Ph.D., Postdoctoral Research Associate; Selene Swanson, Research Specialist II; Anita Saraf, M.D., Ph.D., Senior Proteomics Scientist; Laurence Florens, Ph.D., Managing Director of Proteomics; and Michael Washburn, Ph.D., Director of Proteomics Center. Raymond Trievel, Ph.D., of the University of Michigan also contributed.

The Shilatifard Lab also has collaborated with Robert Roeder and colleagues at The Rockefeller University on a publication in Cell that sheds new light on the process of communication between histones known as histone crosstalk. This process has been a topic of interest to the Shilatifard Lab for many years, and they have made a number of important contributions to its understanding.

Through a series of laborious biochemical and genetic screens in yeast and over five years of work, the Shilatifard Lab identified the molecular machinery required for proper H3K4 methylation by COMPASS. This includes the modification of histone H2B by attaching a single ubiquitin – a regulatory protein that is very similar from species to species – by the Rad6/Bre1 complex in a process called histone crosstalk. In the Cell publication, the team demonstrated that human Rad6/Bre1 also functions in histone crosstalk as it does in yeast.

"This study demonstrates the awesome power of simple genetic and biochemical model systems such as yeast in deciphering molecular machinery involved in chromatin biology and how yeast can play a role as a template in identifying the human counterparts of these proteins," said Dr. Shilatifard. "Indeed, as reported this week in Cell, human Rad6 can functionally replace yeast Rad6, and H2B monoubiquitination in humans functions by the same histone crosstalk mechanism as it does in yeast, demonstrating the conservation in this system from yeast to humans."

Jung-Shin Lee, Ph.D., Postdoctoral Research Associate in the Shilatifard Lab also contributed to this paper. Authors from The Rockefeller University include Jaehoon Kim, Ph.D., Mohamed Guermah, Robert McGinty, Zhanyun Tang, Ph.D., Thomas Milne, Ph.D., and Tom Muir, Ph.D.

Dr. Shilatifard joined the Stowers Institute in 2007 from the Saint Louis University School of Medicine. Learn more about his work at www.stowers.org/labs/ShilatifardLab.asp.

About the Stowers Institute for Medical Research

Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing, treating, and curing disease. Jim and Virginia Stowers endowed the Institute with gifts totaling $2 billion. The endowment resides in a large cash reserve and in substantial ownership of American Century Investments, a privately held mutual fund company that represents exceptional value for the Institute's future.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>