Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding Light on Bacteria

09.02.2016

The tiny cyanobacteria use the principle of the lens in the human eye to perceive light direction

Scientists have been trying to figure out how it is possible for bacteria to perceive light and react to it ever since they started using microscopes 300 years ago. An international team led by the Freiburg biologist Prof. Dr. Annegret Wilde has now solved this riddle: In studies on so-called cyanobacteria, the researchers demonstrated that these tiny organisms of only a few micrometers in size move toward a light source using the same principle of the lens in the human eye. The study was published in the journal eLife.


The light hits the round cells of the bacterium, where it is focused by a microscopically tiny lens. This creates a focal point on the opposite side of the cell. Source: Nils Schürgers

Cyanobacteria have populated Earth for 2.5 billion years and can be found anywhere where there’s light: in ice, deserts, rivers, and lakes, as well as in the walls of buildings and in aquariums. They use light to produce energy by the process of oxygenicphotosynthesis .

In the oceans, which cover roughly 70 percent of Earth’s surface, oxygen-producing cyanobacteria are among the most important photosynthetically active organisms and are thus a central component of the biosphere. The Wilde group together with an international team discovered that cyanobacteria, which can move directly and precisely toward a light source, use their micro-optic properties to identify where the light is coming from.

The light hits the surface of the round unicellular organisms, where it is focused as if by a microscopically tiny lens. This creates a focal point on the opposite side of the cell. The cells then move away from this point of high light intensity, causing them ultimately to move toward the natural light source.

All previous attempts to explain bacterial phototaxis, the process by which bacteria move toward light, have failed because these organisms, which measure only a few lengths of a light wave, were thought to be too small to perceive differences in light between the front and back side of the cell.

Since the entire bacterium functions like a lens, however, the organisms can concentrate light, creating a pronounced light gradient within the cell. “This physical principle is actually hardly different from the way light is focused in the lenses of our eyes,” explains Wilde. “We now want to conduct further joint projects to investigate the concentration of light in microscopic organisms that do not necessarily need to have the shape of a round lens but, for instance, can also concentrate light like an optical fiber.”

A better understanding of the microoptic properties could lead to insight on the extent to which the structure and form of cells and biofilms influence the process of light collection. This knowledge could be used in the future to construct custom-made photobioreactors or to improve new types of solar cells.

Annegret Wilde has served since 2012 as professor of molecular genetics at the University of Freiburg. The study included scientists from the Institute of Biology III as well as the university’s Freiburg Institute for Advanced Studies (FRIAS). The team collaborated strongly with researchers from Karlsruhe and London, England. A key participant in the study was Prof. Dr. Conrad Mullineaux from London who visited Freiburg as an FRIAS external fellow.

Original publication:
N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, A. Wilde (2016): Cyanobacteria use micro-optics to sense light direction. In: eLife. DOI: 10.7554/eLife.12620

Contact:
Prof. Dr. Annegret Wilde
Institute of Biology III
University of Freiburg
Phone: +49 (0)761/203-97828
E-Mail: annegret.wilde@biologie.uni-freiburg.de

Caption:
The light hits the round cells of the bacterium, where it is focused by a microscopically tiny lens. This creates a focal point on the opposite side of the cell. Source: Nils Schürgers

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-09.17-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>