Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing tracks animal-to-human transmission of bacterial pathogens

25.03.2013
Researchers have used whole genome sequencing to reveal if drug-resistant bacteria are transmitted from animals to humans in two disease outbreaks that occurred on different farms in Denmark.

The results, which are published today in EMBO Molecular Medicine, confirm animal-to-human transmission of methicillin-resistant Staphylococcus aureus (MRSA), a disease-causing bacterium that carries the recently described mecC gene. The mecC gene is responsible for resistance to the penicillin-like antibiotic methicillin.

Drug-resistant bacterial infections pose a significant challenge to public health and may have severe and sometimes fatal consequences. As the costs of whole genome sequencing methods continue to plummet and the speed of analysis increases, it becomes increasingly attractive for scientists to use whole genome sequencing to answer disease-related questions.

“We used whole genome sequencing to see if we could determine if the two disease outbreaks were caused by the same bacterium and to investigate if the pathogens were transmitted from animal to humans or the other way around,” remarked Mark Holmes, from the University of Cambridge and the senior author on the paper. “At first glance, it seems reasonable to expect the same pathogen to be the source of the two outbreaks at the two geographically close locations.
By looking at the single differences in nucleotides or SNPs in the DNA sequences of each isolate, it became obvious that two different strains of bacteria were responsible for the two disease outbreaks. In one case, the results also clearly showed that the most likely direction of transmission was from animal to human.”

Methicillin-resistant S. aureus can lead to debilitating skin and soft tissue infec-tions, bacteremia, pneumonia and endocarditis. The researchers used an Illumina HiSeq sequencing system to take a close look at the nucleotide sequence of each pathogen. By comparing single differences in nucleotides in the two sequences (single nucleotide polymorphisms) they were able to reach conclusions about the identity of the pathogens and the routes of infection.

The researchers emphasize that while whole genome sequencing cannot replace other more traditional types of diseases analysis it can greatly increase the ability of scientists to distinguish between different pathogens as the cause of disease.

“Our findings demonstrate that the MRSA strains we studied are capable of transmission between animals and humans, which highlights the role of livestock as a potential reservoir of antibiotic-resistant bacteria,” remarked Ewan Harrison, one of the lead authors of the study.

Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC

Ewan M. Harrison, Gavin K. Paterson, Matthew T.G. Holden, Jesper Larsen, Marc Stegger, Anders Rhod Larsen, Andreas Petersen, Robert L. Skov, Judit Marta Christensen, Anne Bak Zeuthen, Ole Heltberg, Simon R. Harris, Ruth N. Zadoks, Julian Parkhill, Sharon J. Peacock, Mark A. Holmes
Read the paper: http://onlinelibrary.wiley.com/doi/10.1002/emmm.201202413/full

doi: 10.1002/emmm.201202413

Further information on EMBO Molecular Medicine is available at www.embomolmed.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org

About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to sup-port talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in tech-niques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO Communications
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>