Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secretive immune system of the salmon

28.01.2009
During his doctoral thesis, Erlend Haugarvoll discovered new aspects of the salmon immune system. His research looked at the immune cells in the gills of salmon and at immune responses to vaccination. A special type of tissue, rich in immune cells, was found in the gills, and new properties of immune cells that produce brown pigment were discovered.

Successful salmon farming in Norway and other countries depends on the use of vaccination. Vaccination gives salmon good protection against several diseases, but has serious side-effects.

Inflammatory reactions at the injection site can lead to reduced growth rate, reduced meat quality and deformities, raising both economical and ethical around current vaccination regimes. In order to improve resistance to disease in salmon, it is important to find alternative vaccination methods and to acquire more knowledge of how salmon react to vaccination.

Haugarvoll and his colleagues discovered in salmon gill a tissue extremely rich in immune cells. Salmon gills have extremely thin mucous membranes, and they absorb oxygen from the water while keeping out potentially damaging microbes. The fish are therefore dependent on good disease resistance in this organ. The discoveries made by Haugarvoll may prove extremely useful when new vaccines, free from damaging side effects, are developed.

Some fish immune cells contain the pigment melanin, which is the same substance that darkens the skin of people and animals. These cells have been called melanomacrophages and it has been assumed they play a central role in the defence of fish against microbes. The work of Haugarvoll and his associates showed that melanomacrophages in salmon produce their own melanin. There is also reason to believe that this pigment has an important role in the salmon defence system.

Vaccination is a very effective way of protecting animals against infectious disease and has nearly removed the need for antibiotics in Norwegian salmon farming. In his doctorate, Haugarvoll investigated currently unknown sides of fish immune defence, and his work gives hope that vaccines may be developed that can be applied externally.

Cand. med. vet. Erlend Haugarvoll defended his thesis for the degree of Doctor of Philosophy, entitled " Novel leukocyte localisations and characteristics in the Atlantic salmon", on December 16, 2008, at the Norwegian School of Veterinary Science.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>