Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Make Diseased Cells Synthesize Their Own Drug

04.09.2014

In a new study that could ultimately lead to many new medicines, scientists from the Florida campus of The Scripps Research Institute (TSRI) have adapted a chemical approach to turn diseased cells into unique manufacturing sites for molecules that can treat a form of muscular dystrophy.

“We’re using a cell as a reaction vessel and a disease-causing defect as a catalyst to synthesize a treatment in a diseased cell,” said TSRI Professor Matthew Disney. “Because the treatment is synthesized only in diseased cells, the compounds could provide highly specific therapeutics that only act when a disease is present. This means we can potentially treat a host of conditions in a very selective and precise manner in totally unprecedented ways.”


Photo courtesy of The Scripps Research Institute.

Matthew Disney, PhD, is a professor at The Scripps Research Institute, Florida campus.

The promising research was published recently in the international chemistry journal Angewandte Chemie.

Targeting RNA Repeats

... more about:
»Cells »Disney »Drug »RNA »Scripps »Sharpless »TSRI »binds »defect »diseased »diseases »small »weight

In general, small, low molecular weight compounds can pass the blood-brain barrier, while larger, higher weight compounds tend to be more potent. In the new study, however, small molecules became powerful inhibitors when they bound to targets in cells expressing an RNA defect, such as those found in myotonic dystrophy.

Myotonic dystrophy type 2, a relatively mild and uncommon form of the progressive muscle weakening disease, is caused by a type of RNA defect known as a “tetranucleotide repeat,” in which a series of four nucleotides is repeated more times than normal in an individual’s genetic code. In this case, a cytosine-cytosine-uracil-guanine (CCUG) repeat binds to the protein MBNL1, rendering it inactive and resulting in RNA splicing abnormalities that, in turn, results in the disease.

In the study, a pair of small molecule “modules” the scientists developed binds to adjacent parts of the defect in a living cell, bringing these groups close together. Under these conditions, the adjacent parts reach out to one another and, as Disney describes it, permanently hold hands. Once that connection is made, the small molecule binds tightly to the defect, potently reversing disease defects on a molecular level.

“When these compounds assemble in the cell, they are 1,000 times more potent than the small molecule itself and 100 times more potent than our most active lead compound,” said Research Associate Suzanne Rzuczek, the first author of the study. “This is the first time this has been validated in live cells.”

Click Chemistry Construction

The basic process used by Disney and his colleagues is known as “click chemistry”—a process invented by Nobel laureate K. Barry Sharpless, a chemist at TSRI, to quickly produce substances by attaching small units or modules together in much the same way this occurs naturally.

“In my opinion, this is one unique and a nearly ideal application of the process Sharpless and his colleagues first developed,” Disney said.

Given the predictability of the process and the nearly endless combinations, translating such an approach to cellular systems could be enormously productive, Disney said. RNAs make ideal targets because they are modular, just like the compounds for which they provide a molecular template.

Not only that, he added, but many similar RNAs cause a host of incurable diseases such as ALS (Lou Gehrig’s Disease), Huntington’s disease and more than 20 others for which there are no known cures, making this approach a potential route to develop lead therapeutics to this large class of debilitating diseases.

In addition to Rzuczek and Disney, the other author of the study, “A Toxic RNA Catalyzes the In Cellulo Synthesis of Its Own Inhibitor,” is HaJeung Park of TSRI. For more information on the study, see http://onlinelibrary.wiley.com/doi/10.1002/anie.201406465/abstract

The work was supported by the Muscular Dystrophy Foundation, the Myotonic Dystrophy Foundation and the State of Florida.

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

Eric Sauter | newswise

Further reports about: Cells Disney Drug RNA Scripps Sharpless TSRI binds defect diseased diseases small weight

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>